
DuckLake Documentation
DuckLake version 0.3
Generated on 2025‑10‑15 at 10:37 UTC

Contents

Contents i

Summary 1

Specification 5

Introduction 7

Data Types 9

Queries 11

Tables 21
Tables . 21
ducklake_column . 23
ducklake_column_mapping . 24
ducklake_name_mapping . 25
ducklake_column_tag . 25
ducklake_data_file . 26
ducklake_delete_file . 27
ducklake_file_column_stats . 27
ducklake_file_partition_value . 28
ducklake_files_scheduled_for_deletion . 28
ducklake_inlined_data_tables . 29
ducklake_metadata . 29
ducklake_partition_column . 31
ducklake_partition_info . 32
ducklake_schema . 32
ducklake_schema_versions . 33
ducklake_snapshot . 33
ducklake_snapshot_changes . 33
ducklake_table . 34
ducklake_table_column_stats . 34
ducklake_table_stats . 35
ducklake_tag . 35
ducklake_view . 36

DuckDB Extension 37

Introduction 39

Usage 43
Connecting . 43
Choosing a Catalog Database . 45
Choosing Storage . 46

i

DuckLake Documentation

Snapshots . 47
Schema Evolution . 48
Time Travel . 50
Upserting . 50
Configuration . 53
Paths . 54

Maintenance 57
Recommended Maintenance . 57
Merge Adjacent Files . 57
Expire Snapshots . 58
Cleanup of Files . 58
Rewrite Heavily Deleted Files . 59
Checkpoint . 60

Advanced Features 61
Constraints . 61
Conflict Resolution . 61
Data Change Feed . 62
Data Inlining . 63
Encryption . 65
Partitioning . 65
Transactions . 66
Row Lineage . 66
Views . 66
Comments . 66

Metadata 67
List Files . 67
Adding Files . 68

Migrations 71
DuckDB to DuckLake . 71

Guides 73
Backup and Recovery . 73
Access Control . 75

Unsupported Features 81

Acknowledgments 83

ii

DuckLake Documentation

Summary

1

DuckLake Documentation

This document contains DuckLake's documentation in a single‑file easy‑to‑search form. If you find any issues, please report them as a
GitHub issue. Contributions are very welcome in the form of pull requests. If you are considering submitting a contribution to the docu‑
mentation, please consult our contributor guide.

Code repositories:

• DuckLake documentation source code: github.com/duckdb/ducklake‑web

• DuckDB ducklake extension: github.com/duckdb/ducklake

3

https://ducklake.select/
https://github.com/duckdb/ducklake-web/issues
https://github.com/duckdb/ducklake-web/issues
https://github.com/duckdb/ducklake-web/pulls
https://github.com/duckdb/ducklake-web/blob/main/CONTRIBUTING.md
https://github.com/duckdb/ducklake-web
https://github.com/duckdb/ducklake

DuckLake Documentation

4

DuckLake Documentation

Specification

5

Introduction

This page contains the specification for the DuckLake format, version 0.3.

Building Blocks

DuckLake requires twomain components:

• Catalog database: DuckLake requires a database that supports transactions and primary key constraints as defined by the SQL‑92
standard.

• Data storage: The DuckLake specification requires a storage component for storing the data in Parquet format.

Catalog Database

DuckLake uses SQL tables and queries to define the catalog information (metadata, statistics, etc.). This specification explains the schema
and semantics of these:

• Data Types
• Queries
• Tables

If you are reading this specification for the first time, we recommend starting with the “Queries” page, which introduces the queries used
by DuckLake.

Data Storage

DuckLake uses Parquet files to represent its tables. These files can be stored in object storage (blob storage), block storage or file storage.

7

https://en.wikipedia.org/wiki/SQL-92
https://en.wikipedia.org/wiki/SQL-92
https://parquet.apache.org/docs/file-format/
https://parquet.apache.org/docs/file-format/
https://en.wikipedia.org/wiki/Object_storage

DuckLake Documentation

8

Data Types

DuckLake specifies multiple different data types for field values, and also supports nested types. The types of columns are defined in the
column_type field of the ducklake_column table.

Primitive Types

Type Description

boolean True or false

int8 8‑bit signed integer

int16 16‑bit signed integer

int32 32‑bit signed integer

int64 64‑bit signed integer

uint8 8‑bit unsigned integer

uint16 16‑bit unsigned integer

uint32 32‑bit unsigned integer

uint64 64‑bit unsigned integer

float32 32‑bit IEEE 754 floating‑point value

float64 64‑bit IEEE 754 floating‑point value

decimal(P, S) Fixed‑point decimal with precision P and scale S
time Time of day, microsecond precision

timetz Time of day, microsecond precision, with time zone

date Calendar date

timestamp Timestamp, microsecond precision

timestamptz Timestamp, microsecond precision, with time zone

timestamp_s Timestamp, second precision

timestamp_ms Timestamp, millisecond precision

timestamp_ns Timestamp, nanosecond precision

interval Time interval in three different granularities: months, days, andmilliseconds

varchar Text

blob Binary data

json JSON

uuid Universally unique identifier

9

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Universally_unique_identifier

DuckLake Documentation

Nested Types

DuckLake supports nested types and primitive types. Nested types are defined recursively, i.e., in order to define a column of type INT[]
two columns are defined. The top‑level column is of type list, which has a child column of type int32.

The following nested types are supported:

Type Description

list Collection of values with a single child type

struct A tuple of typed values

map A collection of key‑value pairs

Geometry Types

DuckLake supports geometry types using the geometry type of the Parquet format. The geometry type can store different types of
spatial representations called geometry primitives, of which DuckLake supports the following:

Geometry primitive Description

point A single location in coordinate space.

linestring A sequence of points connected by straight line segments.

polygon A planar surface defined by one exterior boundary and zero or more interior boundaries (holes).

multipoint A collection of point geometries.

multilinestring A collection of linestring geometries.

multipolygon A collection of polygon geometries.

linestring z A linestring geometry with an additional Z (elevation) coordinate for each point.

geometrycollection A heterogeneous collection of geometry primitives (e.g., points, lines, polygons, etc.).

10

Queries

This page explains the queries issued to the DuckLake catalog database for reading and writing data.

Reading Data

DuckLake specifies tables and update transactions tomodify them. DuckLake is not a black box: all metadata is stored as SQL tables under
the user's control. Of course, they can be queried in whichever way is best for a client. Below we describe a small working example to
retrieve table data.

The information below is to provide transparency to users and to aid developers making their own implementation of DuckLake. If
you are using the ducklake DuckDB extension, you do not need to worry about these: the extension is running these operations in
the background for you.

Get Current Snapshot

Before anything else we need to find a snapshot ID to be queried. There can be many snapshots in the ducklake_snapshot table. A
snapshot ID is a continuously increasing number that identifies a snapshot. In most cases, you would query the most recent one like so:

SELECT snapshot_id
FROM ducklake_snapshot
WHERE snapshot_id =

(SELECT max(snapshot_id) FROM ducklake_snapshot);

List Schemas

ADuckLake catalog can containmanySQL‑style schemas,whicheach cancontainmany tables. Theseare listed in theducklake_schema
table. Here's howwe get the list of valid schemas for a given snapshot:

SELECT schema_id, schema_name
FROM ducklake_schema
WHERE

<SNAPSHOT_ID> >= begin_snapshot AND
(<SNAPSHOT_ID> < end_snapshot OR end_snapshot IS NULL);

where

• <SNAPSHOT_ID> is a BIGINT referring to the snapshot_id column in the ducklake_snapshot table.

List Tables

We can list the tables available in a schema for a specific snapshot using the ducklake_table table:

SELECT table_id, table_name
FROM ducklake_table
WHERE

schema_id = <SCHEMA_ID> AND
<SNAPSHOT_ID> >= begin_snapshot AND
(<SNAPSHOT_ID> < end_snapshot OR end_snapshot IS NULL);

11

DuckLake Documentation

where

• <SCHEMA_ID> is a BIGINT referring to the schema_id column in the ducklake_schema table.
• <SNAPSHOT_ID> is a BIGINT referring to the snapshot_id column in the ducklake_snapshot table.

Show the Structure of a Table

For each given table, we can list the available top‑level columns using the ducklake_column table:

SELECT column_id, column_name, column_type
FROM ducklake_column
WHERE

table_id = <TABLE_ID> AND
parent_column IS NULL AND
<SNAPSHOT_ID> >= begin_snapshot AND
(<SNAPSHOT_ID> < end_snapshot OR end_snapshot IS NULL)

ORDER BY column_order;

where

• <TABLE_ID> is a BIGINT referring to the table_id column in the ducklake_table table.
• <SNAPSHOT_ID> is a BIGINT referring to the snapshot_id column in the ducklake_snapshot table.

DuckLake supports nested columns – the filter for parent_column IS NULL only shows the top‑level columns.

For the list of supported data types, please refer to the “Data Types” page.

SELECT

Now that we know the table structure we can query actual data from the Parquet files that store table data. We need to join the list of data
files with the list of delete files (if any). There can be at most one delete file per file in a single snapshot.

SELECT data.path AS data_file_path, del.path AS delete_file_path
FROM ducklake_data_file AS data
LEFT JOIN (

SELECT *
FROM ducklake_delete_file
WHERE

<SNAPSHOT_ID> >= begin_snapshot AND
(<SNAPSHOT_ID> < end_snapshot OR end_snapshot IS NULL)

) AS del
USING (data_file_id)
WHERE

data.table_id = <TABLE_ID> AND
<SNAPSHOT_ID> >= data.begin_snapshot AND
(<SNAPSHOT_ID> < data.end_snapshot OR data.end_snapshot IS NULL)

ORDER BY file_order;

where

• <TABLE_ID> is a BIGINT referring to the table_id column in the ducklake_table table.
• <SNAPSHOT_ID> is a BIGINT referring to the snapshot_id column in the ducklake_snapshot table.

Nowwehave a list of files. In order to reconstruct actual table rows, we need to read all rows from thedata_file_path files and remove
the rows labeled as deleted in the delete_file_path.

Not all files have to contain all the columns currently defined in the table, some files may also have columns that existed previously but
have been removed.

12

DuckLake Documentation

DuckLake also supports changing the schema, see schema evolution.

Note on Paths In DuckLake, paths can be relative to the initially specified data path. Whether a path is relative or not to the data_
path prefix from ducklake_metadata, is stored in the ducklake_data_file and ducklake_delete_file entries (path_
is_relative).

SELECTwith File Pruning

One of themain strengths of lakehouse formats is the ability to prune files that cannot contain data relevant to the query. Theducklake_
file_column_stats table contains the file‑level statistics. We can use the information there to prune the list of files to be read if a filter
predicate is given.

We can get a list of all files that are part of a given table like described above. We can then reduce that list to only relevant files by querying
the per‑file column statistics. For example, for scalar equality we can find the relevant files using the query below:

SELECT data_file_id
FROM ducklake_file_column_stats
WHERE

table_id = <TABLE_ID> AND
column_id = <COLUMN_ID> AND
(<SCALAR> >= min_value OR min_value IS NULL) AND
(<SCALAR> <= max_value OR max_value IS NULL);

where

• <TABLE_ID> is a BIGINT referring to the table_id column in the ducklake_table table.
• <COLUMN_ID> is a BIGINT referring to the column_id column in the ducklake_column table.
• <SCALAR> is the scalar comparison value for the pruning.

Of course, other filter predicates like “greater than” will require slightly different filtering here.

The minimum and maximum values for each column are stored as strings and need to be cast for correct range filters on numeric
columns.

Writing Data

Snapshot Creation

Any changes to data stored in DuckLake require the creation of a new snapshot. We need to:

• create a new snapshot in ducklake_snapshot and
• log the changes a snapshot made in ducklake_snapshot_changes

INSERT INTO ducklake_snapshot (
snapshot_id,
snapshot_timestamp,
schema_version,
next_catalog_id,
next_file_id

)
VALUES (

<SNAPSHOT_ID>,
now(),
<SCHEMA_VERSION>,
<NEXT_CATALOG_ID>,
<NEXT_FILE_ID>

);

13

DuckLake Documentation

INSERT INTO ducklake_snapshot_changes (
snapshot_id,
snapshot_changes,
author,
commit_message,
commit_extra_info

)
VALUES (

<SNAPSHOT_ID>,
<CHANGES>,
<AUTHOR>,
<COMMIT_MESSAGE>,
<COMMIT_EXTRA_INFO>

);

where

• <SNAPSHOT_ID> is the new snapshot identifier. This should be max(snapshot_id) + 1.
• <SCHEMA_VERSION> is the schema version for the new snapshot. If any schema changes are made, this needs to be incremented.
Otherwise the previous snapshot's schema_version can be re‑used.

• <NEXT_CATALOG_ID>gives thenext unused identifier for tables, schemas, or views. This only has tobe incremented if newcatalog
entries are created.

• <NEXT_FILE_ID> is the same but for data or delete files.
• <CHANGES> contains a list of changes performed by the snapshot. See the list of possible values in the ducklake_snapshot_
changes table's documentation.

• <AUTHOR> contains information about the author of the commit (optional).
• <COMMIT_MESSAGE> attaches a commit message to the transaction (optional).
• <COMMIT_EXTRA_INFO> attaches extra information to the transaction (optional).

CREATE SCHEMA

A schema is a collection of tables. In order to create a new schema, we can just insert into the ducklake_schema table:

INSERT INTO ducklake_schema (
schema_id,
schema_uuid,
begin_snapshot,
end_snapshot,
schema_name

)
VALUES (

<SCHEMA_ID>,
uuid(),
<SNAPSHOT_ID>,
NULL,
<SCHEMA_NAME>

);

where

• <SCHEMA_ID> is the new schema identifier. This should be created by incrementing next_catalog_id from the previous snap‑
shot.

• <SNAPSHOT_ID> is the snapshot identifier of the new snapshot as described above.
• <SCHEMA_NAME> is the name of the new schema.

14

DuckLake Documentation

CREATE TABLE

Creating a table in a schema is very similar to creating a schema. We insert into the ducklake_table table:

INSERT INTO ducklake_table (
table_id,
table_uuid,
begin_snapshot,
end_snapshot,
schema_id,
table_name

)
VALUES (

<TABLE_ID>,
uuid(),
<SNAPSHOT_ID>,
NULL,
<SCHEMA_ID>,
<TABLE_NAME>

);

where

• <TABLE_ID> is the new table identifier. This should be created by further incrementing next_catalog_id from the previous
snapshot.

• <SNAPSHOT_ID> is the snapshot identifier of the new snapshot as described above.
• <SCHEMA_ID> is a BIGINT referring to the schema_id column in the ducklake_schema table table.
• <TABLE_NAME> is the name of the new table.

A table needs some columns, we can add columns to the new table by inserting into theducklake_column table table. For each column
to be added, we run the following query:

INSERT INTO ducklake_column (
column_id,
begin_snapshot,
end_snapshot,
table_id,
column_order,
column_name,
column_type,
nulls_allowed

)
VALUES (

<COLUMN_ID>,
<SNAPSHOT_ID>,
NULL,
<TABLE_ID>,
<COLUMN_ORDER>,
<COLUMN_NAME>,
<COLUMN_TYPE>,
<NULLS_ALLOWED>

);

where

• <COLUMN_ID> is the new column identifier. This ID must be uniquewithin the table over its entire life time.
• <SNAPSHOT_ID> is the snapshot identifier of the new snapshot as described above.
• <TABLE_ID> is a BIGINT referring to the table_id column in the ducklake_table table.
• <COLUMN_ORDER> is a number that defines where the column is placed in an ordered list of columns.
• <COLUMN_NAME> is the name of the column.

15

DuckLake Documentation

• <COLUMN_TYPE> is the data type of the column. See the “Data Types” page for details.
• <NULLS_ALLOWED> is a boolean that defines if NULL values can be stored in the column. Typically set to true.

We skipped some complexity in this example around default values and nested types and just left those fields asNULL. See the table
schema definition for additional details.

DROP TABLE

Dropping a table in DuckLake requires an update to the end_snapshot field in all metadata entries corresponding to the dropped table
ID.

UPDATE ducklake_table
SET end_snapshot = <SNAPSHOT_ID> WHERE table_id = <TABLE_ID> AND end_snapshot IS NULL;

UPDATE ducklake_partition_info
SET end_snapshot = <SNAPSHOT_ID> WHERE table_id = <TABLE_ID> AND end_snapshot IS NULL;

UPDATE ducklake_column
SET end_snapshot = <SNAPSHOT_ID> WHERE table_id = <TABLE_ID> AND end_snapshot IS NULL;

UPDATE ducklake_column_tag
SET end_snapshot = <SNAPSHOT_ID> WHERE table_id = <TABLE_ID> AND end_snapshot IS NULL;

UPDATE ducklake_data_file
SET end_snapshot = <SNAPSHOT_ID> WHERE table_id = <TABLE_ID> AND end_snapshot IS NULL;

UPDATE ducklake_delete_file
SET end_snapshot = <SNAPSHOT_ID> WHERE table_id = <TABLE_ID> AND end_snapshot IS NULL;

UPDATE ducklake_tag
SET end_snapshot = <SNAPSHOT_ID> WHERE object_id = <TABLE_ID> AND end_snapshot IS NULL;

where

• <SNAPSHOT_ID> is the snapshot identifier of the new snapshot as described above.
• <TABLE_ID> is the identifier of the table that will be dropped.

DROP SCHEMA

Dropping a schema in DuckLake requires updating the end_snapshot in the ducklake_schema table.

UPDATE ducklake_schema
SET

end_snapshot = <SNAPSHOT_ID>
WHERE

schema_id = <SCHEMA_ID> AND
end_snapshot IS NULL;

where

• <SNAPSHOT_ID> is the snapshot identifier of the new snapshot as described above.
• <SCHEMA_ID> is the identifier of the schema that will be dropped.

DROP SCHEMA is only allowed on empty schemas. Ensure that all tables within the schema are dropped beforehand.

16

DuckLake Documentation

INSERT

Inserting data into a DuckLake table consists of two main steps: first, we need to write a Parquet file containing the actual row data to
storage, and second, we need to register that file in themetadata tables and update global statistics. Let's assume the file has already been
written.

INSERT INTO ducklake_data_file (
data_file_id,
table_id,
begin_snapshot,
end_snapshot,
path,
path_is_relative,
file_format,
record_count,
file_size_bytes,
footer_size,
row_id_start

)
VALUES (

<DATA_FILE_ID>,
<TABLE_ID>,
<SNAPSHOT_ID>,
NULL,
<PATH>,
true,
'parquet',
<RECORD_COUNT>,
<FILE_SIZE_BYTES>,
<FOOTER_SIZE>,
<ROW_ID_START>

);

where

• <DATA_FILE_ID> is the new data file identifier. This ID must be uniquewithin the table over its entire life time.
• <TABLE_ID> is a BIGINT referring to the table_id column in the ducklake_table table.
• <SNAPSHOT_ID> is the snapshot identifier of the new snapshot as described above.
• <PATH> is the file name relative to the DuckLake data path from the top‑level metadata.
• <RECORD_COUNT> is the number of rows in the file.
• <FILE_SIZE_BYTES> is the file size.
• <FOOTER_SIZE> is the position of the Parquet footer. This helps with efficiently reading the file.
• <ROW_ID_START> is the first logical row ID from the file. This number can be read from the ducklake_table_stats table via
column next_row_id.

We have omitted some complexity around relative paths, encrypted files, partitioning and partial files in this example. Refer to the duck-
lake_data_file table documentation for details.

DuckLake also supports changing the schema, see schema evolution.

We also have to update some statistics in theducklake_table_stats table andducklake_table_column_stats table tables.

UPDATE ducklake_table_stats
SET

record_count = record_count + <RECORD_COUNT>,
next_row_id = next_row_id + <RECORD_COUNT>,
file_size_bytes = file_size_bytes + <FILE_SIZE_BYTES>

WHERE table_id = <TABLE_ID>;

UPDATE ducklake_table_column_stats

17

DuckLake Documentation

SET
contains_null = contains_null OR <NULL_COUNT> > 0,
contains_nan = contains_nan,
min_value = min(min_value, <MIN_VALUE>),
max_value = max(max_value, <MAX_VALUE>)

WHERE
table_id = <TABLE_ID> AND
column_id = <COLUMN_ID>;

INSERT INTO ducklake_file_column_stats (
data_file_id,
table_id,
column_id,
value_count,
null_count,
min_value,
max_value,
contains_nan

)
VALUES (

<DATA_FILE_ID>,
<TABLE_ID>,
<COLUMN_ID>,
<RECORD_COUNT>,
<NULL_COUNT>,
<MIN_VALUE>,
<MAX_VALUE>,
<CONTAINS_NAN>;

);

where

• <TABLE_ID> is a BIGINT referring to the table_id column in the ducklake_table table.
• <COLUMN_ID> is a BIGINT referring to the column_id column in the ducklake_column table.
• <DATA_FILE_ID> is a BIGINT referring to the data_file_id column in the ducklake_data_file table.
• <RECORD_COUNT> is the number of values (including NULL and NaN values) in the file column.
• <NULL_COUNT> is the number of NULL values in the file column.
• <MIN_VALUE> is theminimum value in the file column as a string.
• <MAX_VALUE> is themaximum value in the file column as a string.
• <FILE_SIZE_BYTES> is the size of the new Parquet file.
• <CONTAINS_NAN> is a flag whether the column contains any NaN values. This is only relevant for floating‑point types.

This example assumes there are already rows in the table. If there are none, we need to use INSERT instead of UPDATE here. We
also skipped the column_size_bytes column here, it can safely be set to NULL.

DELETE

Deleting data from a DuckLake table consists of twomain steps: first, we need to write a Parquet delete file containing the row index to be
deleted to storage, and second, we need to register that delete file in themetadata tables. Let's assume the file has already beenwritten.

INSERT INTO ducklake_delete_file (
delete_file_id,
table_id,
begin_snapshot,
end_snapshot,
data_file_id,
path,
path_is_relative,

18

DuckLake Documentation

format,
delete_count,
file_size_bytes,
footer_size

)
VALUES (

<DELETE_FILE_ID>,
<TABLE_ID>,
<SNAPSHOT_ID>,
NULL,
<DATA_FILE_ID>,
<PATH>,
true,
'parquet',
<DELETE_COUNT>,
<FILE_SIZE_BYTES>,
<FOOTER_SIZE>

);

where

• <DELETE_FILE_ID> is the identifier for the new delete file.
• <TABLE_ID> is a BIGINT referring to the table_id column in the ducklake_table table.
• <SNAPSHOT_ID> is the snapshot identifier of the new snapshot as described above.
• <DATA_FILE_ID> is the identifier of the data file fromwhich the rows are to be deleted.
• <PATH> is the file name relative to the DuckLake data path from the top‑level metadata.
• <DELETE_COUNT> is the number of deletion records in the file.
• <FILE_SIZE_BYTES> is the file size.
• <FOOTER_SIZE> is the position of the Parquet footer. This helps with efficiently reading the file.

Notes:

• We have omitted some complexity around relative paths and encrypted files in this example. Refer to the ducklake_delete_
file table documentation for details.

• In DuckLake, the strategy used for DELETE operations ismerge‑on‑read. Delete files are referenced in the ducklake_delete_
file table.

• Please note that DELETE operations also do not require updates to table statistics, as the statistics aremaintained as upper bounds,
and deletions do not violate these bounds.

UPDATE

In DuckLake, UPDATE operations are expressed as a combination of a DELETE followed by an INSERT. Specifically, the outdated row is
marked for deletion, and the updated version of that row is inserted. As a result, the changes to the metadata tables are equivalent to
performing a DELETE and an INSERT operation sequentially within the same transaction.

19

DuckLake Documentation

20

Tables

Tables

DuckLake 0.3 uses 22 tables to store metadata and to stage data fragments for data inlining. Below we describe all those tables and their
semantics.

The following figure shows the most important 11 tables defined by the DuckLake schema:

21

DuckLake Documentation

Snapshots

• ducklake_snapshot
• ducklake_snapshot_changes

DuckLake Schema

• ducklake_schema
• ducklake_table
• ducklake_view
• ducklake_column

Data Files and Tables

• ducklake_data_file
• ducklake_delete_file
• ducklake_files_scheduled_for_deletion
• ducklake_inlined_data_tables

Data File Mapping

• ducklake_column_mapping
• ducklake_name_mapping

Statistics

DuckLake supports statistics on the table, column and file level.

• ducklake_table_stats
• ducklake_table_column_stats
• ducklake_file_column_stats

Partitioning Information

DuckLake supports defining explicit partitioning.

• ducklake_partition_info
• ducklake_partition_column
• ducklake_file_partition_value

Auxiliary Tables

• ducklake_metadata
• ducklake_tag
• ducklake_column_tag
• ducklake_schema_versions

22

DuckLake Documentation

Full Schema Creation Script

Below is the full SQL script to create a DuckLake metadata database:

CREATE TABLE ducklake_metadata (key VARCHAR NOT NULL, value VARCHAR NOT NULL, scope VARCHAR, scope_id
BIGINT);
CREATE TABLE ducklake_snapshot (snapshot_id BIGINT PRIMARY KEY, snapshot_time TIMESTAMPTZ, schema_
version BIGINT, next_catalog_id BIGINT, next_file_id BIGINT);
CREATE TABLE ducklake_snapshot_changes (snapshot_id BIGINT PRIMARY KEY, changes_made VARCHAR, author
VARCHAR, commit_message VARCHAR, commit_extra_info VARCHAR);
CREATE TABLE ducklake_schema (schema_id BIGINT PRIMARY KEY, schema_uuid UUID, begin_snapshot BIGINT,
end_snapshot BIGINT, schema_name VARCHAR, path VARCHAR, path_is_relative BOOLEAN);
CREATE TABLE ducklake_table (table_id BIGINT, table_uuid UUID, begin_snapshot BIGINT, end_snapshot
BIGINT, schema_id BIGINT, table_name VARCHAR, path VARCHAR, path_is_relative BOOLEAN);
CREATE TABLE ducklake_view (view_id BIGINT, view_uuid UUID, begin_snapshot BIGINT, end_snapshot BIGINT,
schema_id BIGINT, view_name VARCHAR, dialect VARCHAR, sql VARCHAR, column_aliases VARCHAR);
CREATE TABLE ducklake_tag (object_id BIGINT, begin_snapshot BIGINT, end_snapshot BIGINT, key VARCHAR,
value VARCHAR);
CREATE TABLE ducklake_column_tag (table_id BIGINT, column_id BIGINT, begin_snapshot BIGINT, end_snapshot
BIGINT, key VARCHAR, value VARCHAR);
CREATE TABLE ducklake_data_file (data_file_id BIGINT PRIMARY KEY, table_id BIGINT, begin_snapshot
BIGINT, end_snapshot BIGINT, file_order BIGINT, path VARCHAR, path_is_relative BOOLEAN, file_format
VARCHAR, record_count BIGINT, file_size_bytes BIGINT, footer_size BIGINT, row_id_start BIGINT,
partition_id BIGINT, encryption_key VARCHAR, partial_file_info VARCHAR, mapping_id BIGINT);
CREATE TABLE ducklake_file_column_stats (data_file_id BIGINT, table_id BIGINT, column_id BIGINT, column_
size_bytes BIGINT, value_count BIGINT, null_count BIGINT, min_value VARCHAR, max_value VARCHAR,
contains_nan BOOLEAN, extra_stats VARCHAR);
CREATE TABLE ducklake_delete_file (delete_file_id BIGINT PRIMARY KEY, table_id BIGINT, begin_snapshot
BIGINT, end_snapshot BIGINT, data_file_id BIGINT, path VARCHAR, path_is_relative BOOLEAN, format
VARCHAR, delete_count BIGINT, file_size_bytes BIGINT, footer_size BIGINT, encryption_key VARCHAR);
CREATE TABLE ducklake_column (column_id BIGINT, begin_snapshot BIGINT, end_snapshot BIGINT, table_id
BIGINT, column_order BIGINT, column_name VARCHAR, column_type VARCHAR, initial_default VARCHAR, default_
value VARCHAR, nulls_allowed BOOLEAN, parent_column BIGINT);
CREATE TABLE ducklake_table_stats (table_id BIGINT, record_count BIGINT, next_row_id BIGINT, file_size_
bytes BIGINT);
CREATE TABLE ducklake_table_column_stats (table_id BIGINT, column_id BIGINT, contains_null BOOLEAN,
contains_nan BOOLEAN, min_value VARCHAR, max_value VARCHAR, extra_stats VARCHAR);
CREATE TABLE ducklake_partition_info (partition_id BIGINT, table_id BIGINT, begin_snapshot BIGINT, end_
snapshot BIGINT);
CREATE TABLE ducklake_partition_column (partition_id BIGINT, table_id BIGINT, partition_key_index
BIGINT, column_id BIGINT, transform VARCHAR);
CREATE TABLE ducklake_file_partition_value (data_file_id BIGINT, table_id BIGINT, partition_key_index
BIGINT, partition_value VARCHAR);
CREATE TABLE ducklake_files_scheduled_for_deletion (data_file_id BIGINT, path VARCHAR, path_is_relative
BOOLEAN, schedule_start TIMESTAMPTZ);
CREATE TABLE ducklake_inlined_data_tables (table_id BIGINT, table_name VARCHAR, schema_version BIGINT);
CREATE TABLE ducklake_column_mapping (mapping_id BIGINT, table_id BIGINT, type VARCHAR);
CREATE TABLE ducklake_name_mapping (mapping_id BIGINT, column_id BIGINT, source_name VARCHAR, target_
field_id BIGINT, parent_column BIGINT, is_partition BOOLEAN);
CREATE TABLE ducklake_schema_versions (begin_snapshot BIGINT, schema_version BIGINT);

ducklake_column

This table describes the columns that are part of a table, including their types, default values, etc.

23

DuckLake Documentation

Column name Column type

column_id BIGINT
begin_snapshot BIGINT
end_snapshot BIGINT
table_id BIGINT
column_order BIGINT
column_name VARCHAR
column_type VARCHAR
initial_default VARCHAR
default_value VARCHAR
nulls_allowed BOOLEAN
parent_column BIGINT

• column_id is the numeric identifier of the column. If the Parquet file includes a field identifier, it corresponds to the file's field_
id. This identifier should remain consistent throughout all versions of the column, until it's dropped. The column_id must be
unique per table.

• begin_snapshot refers to a snapshot_id from the ducklake_snapshot table. This version of the column exists starting
with this snapshot id.

• end_snapshot refers to a snapshot_id from the ducklake_snapshot table. This version of the column exists up to but not
including this snapshot id. If end_snapshot is NULL, this version of the column is currently valid.

• table_id refers to a table_id from the ducklake_table table.
• column_order is a number that defines the position of the column in the list of columns. It needs to be unique within a snapshot
but does not have to be contiguous (gaps are ok).

• column_name is the name of this version of the column, e.g., my_column.
• column_type is the type of this version of the column as defined in the list of data types.
• initial_default is the initial default value as the column is being created, e.g., in ALTER TABLE, encoded as a string. Can be
NULL.

• default_value is the operational default value as data is being inserted and updated, e.g., in INSERT, encoded as a string. Can
be NULL.

• nulls_allowed defines whether NULL values are allowed in this version of the column. Note that default values have to be set if
this is set to false.

• parent_column is the column_id of the parent column. This is NULL for top‑level and non‑nested columns. For example, for
STRUCT types, this would refer to the ”parent” struct column.

Every ALTER of the column creates a new version of the column, which will use the same column_id.

ducklake_column_mapping

Mappings contain the information used to map Parquet fields to column ids in the absence of field-ids in the Parquet file.

Column name Column type

mapping_id BIGINT
table_id BIGINT
type VARCHAR

• mapping_id is thenumeric identifier of themapping. mapping_id is incremented fromnext_catalog_id in theducklake_
snapshot table.

24

https://github.com/apache/parquet-format/blob/f1fd3b9171aec7a7f0106e0203caef88d17dda82/src/main/thrift/parquet.thrift#L550
https://github.com/apache/parquet-format/blob/f1fd3b9171aec7a7f0106e0203caef88d17dda82/src/main/thrift/parquet.thrift#L550

DuckLake Documentation

• table_id refers to a table_id from the ducklake_table table.
• type defines what method is used to perform the mapping.

The valid type values are the following:

type Description

map_by_name Map the columns based on the names in the Parquet file

ducklake_name_mapping

This table contains the information used to map a name to a column_id for a given mapping_idwith the map_by_name type.

Column name Column type

mapping_id BIGINT
column_id BIGINT
source_name VARCHAR
target_field_id BIGINT
parent_column BIGINT

• mapping_id refers to a mapping_id from the ducklake_column_mapping table.
• column_id refers to a column_id from the ducklake_column table.
• source_name refers to the name of the field this mapping applies to.
• target_field_id refers to the field-id that a field with the source_name is mapped to.
• parent_column is the column_id of the parent column. This is NULL for top‑level and non‑nested columns. For example, for
STRUCT types, this would refer to the ”parent” struct column.

ducklake_column_tag

Columns can also have tags, those are defined in this table.

Column name Column type

table_id BIGINT
column_id BIGINT
begin_snapshot BIGINT
end_snapshot BIGINT
key VARCHAR
value VARCHAR

• table_id refers to a table_id from the ducklake_table table.
• column_id refers to a column_id from the ducklake_column table.
• begin_snapshot refers to a snapshot_id from the ducklake_snapshot table. The tag is valid starting with this snapshot
id.

• end_snapshot refers to a snapshot_id from the ducklake_snapshot table. The tag is valid up to but not including this
snapshot id. If end_snapshot is NULL, the tag is currently valid.

• key is an arbitrary key string. The key can't be NULL.
• value is the arbitrary value string.

25

DuckLake Documentation

ducklake_data_file

Data files contain the actual row data.

Column name Column type

data_file_id BIGINT Primary key

table_id BIGINT
begin_snapshot BIGINT
end_snapshot BIGINT
file_order BIGINT
path VARCHAR
path_is_relative BOOLEAN
file_format VARCHAR
record_count BIGINT
file_size_bytes BIGINT
footer_size BIGINT
row_id_start BIGINT
partition_id BIGINT
encryption_key VARCHAR
partial_file_info VARCHAR
mapping_id BIGINT

• data_file_id is the numeric identifier of the file. It is a primary key. data_file_id is incremented from next_file_id in
the ducklake_snapshot table.

• table_id refers to a table_id from the ducklake_table table.
• begin_snapshot refers to a snapshot_id from the ducklake_snapshot table. The file is part of the table starting with this
snapshot id.

• end_snapshot refers toasnapshot_id fromtheducklake_snapshot table. The file ispartof the tableup tobutnot including
this snapshot id. If end_snapshot is NULL, the file is currently part of the table.

• file_order is a number that defines the vertical position of the file in the table. It needs to be unique within a snapshot but does
not have to be contiguous (gaps are ok).

• path is the file path of the data file, e.g., my_file.parquet for a relative path.
• path_is_relativewhether the path is relative to the path of the table (true) or an absolute path (false).
• file_format is the storage format of the file. Currently, only parquet is allowed.
• record_count is the number of records (row) in the file.
• file_size_bytes is the size of the file in bytes.
• footer_size is the size of the file metadata footer, in the case of Parquet the Thrift data. This is an optimization that allows for
faster reading of the file.

• row_id_start is the first logical row id in the file. (Every row has a unique row id that is maintained.)
• partition_id refers to a partition_id from the ducklake_partition_info table.
• encryption_key contains the encryption for the file if encryption is enabled.
• partial_file_info is used when snapshots refer to parts of a file.
• mapping_id refers to a mapping_id from the ducklake_column_mapping table.

26

DuckLake Documentation

ducklake_delete_file

Delete files contain the row ids of rows that are deleted. Each data file will have its own delete file if any deletes are present for this data
file.

Column name Column type

delete_file_id BIGINT Primary key

table_id BIGINT
begin_snapshot BIGINT
end_snapshot BIGINT
data_file_id BIGINT
path VARCHAR
path_is_relative BOOLEAN
format VARCHAR
delete_count BIGINT
file_size_bytes BIGINT
footer_size BIGINT
encryption_key VARCHAR

• delete_file_id is the numeric identifier of the delete file. It is a primary key. delete_file_id is incremented from next_
file_id in the ducklake_snapshot table.

• table_id refers to a table_id from the ducklake_table table.
• begin_snapshot refers to a snapshot_id from the ducklake_snapshot table. The delete file is part of the table starting
with this snapshot id.

• end_snapshot refers to a snapshot_id from the ducklake_snapshot table. The delete file is part of the table up to but not
including this snapshot id. If end_snapshot is NULL, the delete file is currently part of the table.

• data_file_id refers to a data_file_id from the ducklake_data_file table.
• path is the file name of the delete file, e.g., my_file-deletes.parquet for a relative path.
• path_is_relativewhether the path is relative to the path of the table (true) or an absolute path (false).
• format is the storage format of the delete file. Currently, only parquet is allowed.
• delete_count is the number of deletion records in the file.
• file_size_bytes is the size of the file in bytes.
• footer_size is the size of the file metadata footer, in the case of Parquet the Thrift data. This is an optimization that allows for
faster reading of the file.

• encryption_key contains the encryption for the file if encryption is enabled.

ducklake_file_column_stats

This table contains column‑level statistics for a single data file.

Column name Column type

data_file_id BIGINT
table_id BIGINT
column_id BIGINT
column_size_bytes BIGINT

27

DuckLake Documentation

Column name Column type

value_count BIGINT
null_count BIGINT
min_value VARCHAR
max_value VARCHAR
contains_nan BOOLEAN
extra_stats VARCHAR

• data_file_id refers to a data_file_id from the ducklake_data_file table.
• table_id refers to a table_id from the ducklake_table table.
• column_id refers to a column_id from the ducklake_column table.
• column_size_bytes is the byte size of the column.
• value_count is the number of values in the column. This does not have to correspond to the number of records in the file for
nested types.

• null_count is the number of values in the column that are NULL.
• min_value contains the minimum value for the column, encoded as a string. This does not have to be exact but has to be a lower
bound. The value has to be cast to the actual type for accurate comparison, e.g., on integer types.

• max_value contains themaximumvalue for the column, encoded as a string. This does not have to be exact but has to be an upper
bound. The value has to be cast to the actual type for accurate comparison, e.g., on integer types.

• contains_nan is a flag whether the column contains any NaN values. This is only relevant for floating‑point types.
• extra_stats contains different statistics from specific types such as geometry types.

ducklake_file_partition_value

This table defines which data file belongs to which partition.

Column name Column type

data_file_id BIGINT
table_id BIGINT
partition_key_index BIGINT
partition_value VARCHAR

• data_file_id refers to a data_file_id from the ducklake_data_file table.
• table_id refers to a table_id from the ducklake_table table.
• partition_key_index refers to a partition_key_index from the ducklake_partition_column table.
• partition_value is the value that all the rows in the data file have, encoded as a string.

ducklake_files_scheduled_for_deletion

Files that are no longer part of any snapshot are scheduled for deletion.

Column name Column type

data_file_id BIGINT
path VARCHAR

28

DuckLake Documentation

Column name Column type

path_is_relative BOOLEAN
schedule_start TIMESTAMP

• data_file_id refers to a data_file_id from the ducklake_data_file table.
• path is the file name of the file, e.g., my_file.parquet. The file name is either relative to the data_path value in ducklake_
metadata or absolute. If relative, the path_is_relative field is set to true.

• path_is_relative defines whether the path is absolute or relative, see above.
• schedule_start is a timestamp of when this file was scheduled for deletion.

ducklake_inlined_data_tables

This table links DuckLake snapshots with inlined data tables.

Column name Column type

table_id BIGINT
table_name VARCHAR
schema_version BIGINT

• table_id refers to a table_id from the ducklake_table table.
• table_name is a string that names the data table for inlined data.
• schema_version refers to a schema version in the ducklake_snapshot table.

ducklake_metadata

The ducklake_metadata table contains key/value pairs with information about the specific setup of the DuckLake catalog.

Column name Column type

key VARCHAR Not NULL
value VARCHAR Not NULL
scope VARCHAR
scope_id BIGINT

• key is an arbitrary key string. See below for a list of pre‑defined keys. The key cannot be NULL.
• value is the arbitrary value string. The value cannot be NULL.
• scope defines the scope of the setting.
• scope_id is the id of the item that the setting is scoped to (see the table below) or NULL for the Global scope.

Scope scope Description

Global NULL The scope of the setting is global for the entire catalog.

Schema schema The setting is scoped to the schema_id referenced by scope_id.
Table table The setting is scoped to the table_id referenced by scope_id.

29

DuckLake Documentation

Currently, the following values for key are specified:

Name Description Notes Scope(s)

version DuckLake format version. Global

created_
by

Tool used to write the DuckLake. Global

table A string that identifies which programwrote the
schema, e.g., DuckDB v1.3.2.

Global

data_path Path to data files, e.g.,
s3://mybucket/myprefix/.

Has to end in / Global

encrypted Whether or not to encrypt Parquet files written to the
data path.

'true' or 'false' Global

data_
inlining_
row_limit

Maximum amount of rows to inline in a single insert. Global,
Schema,
Table

target_
file_size

The target data file size for insertion and compaction
operations.

Global,
Schema,
Table

parquet_
row_
group_
size_
bytes

Number of bytes per row group in Parquet files. Global,
Schema,
Table

parquet_
row_
group_
size

Number of rows per row group in Parquet files. Global,
Schema,
Table

parquet_
compression

Compression algorithm for Parquet files, e.g., zstd. uncompressed, snappy, gzip, zstd,
brotli, lz4, lz4_raw

Global,
Schema,
Table

parquet_
compression_
level

Compression level for Parquet files. Global,
Schema,
Table

parquet_
version

Parquet format version. 1 or 2 Global,
Schema,
Table

hive_
file_
pattern

If partitioned data should be written in a Hive‑style
folder structure.

'true' or 'false' Global

require_
commit_
message

If an explicit commit message is required for a snapshot
commit.

'true' or 'false' Global

rewrite_
delete_
threshold

Minimum amount of data (0‑1) that must be removed
from a file before a rewrite is warranted.

Value between 0 and 1 Global

delete_
older_
than

How old unused files must be to be removed by the
ducklake_delete_orphaned_files and
ducklake_cleanup_old_files functions.

Duration string (e.g., 7d, 24h) Global

30

DuckLake Documentation

Name Description Notes Scope(s)

expire_
older_
than

How old snapshots must be, by default, to be expired by
ducklake_expire_snapshots.

Duration string (e.g., 30d) Global

compaction_
schema

Pre‑defined schema used as a default value for
compaction functions.

Used by ducklake_flush_inlined_
data, ducklake_merge_adjacent_
files, ducklake_rewrite_data_
files, etc.

Global

compaction_
table

Pre‑defined table used as a default value for
compaction functions.

Used by ducklake_flush_inlined_
data, ducklake_merge_adjacent_
files, ducklake_rewrite_data_
files, etc.

Global

per_
thread_
output

Whether to create separate output files per thread
during parallel insertion.

'true' or 'false' Global

ducklake_partition_column

Partitions can refer to one or more columns, possibly with transformations such as hashing or bucketing.

Column name Column type

partition_id BIGINT
table_id BIGINT
partition_key_index BIGINT
column_id BIGINT
transform VARCHAR

• partition_id refers to a partition_id from the ducklake_partition_info table.
• table_id refers to a table_id from the ducklake_table table.
• partition_key_index defines where in the partition key the column is using 0‑based indexing. For example, in a partitioning
by (a, b, c) the partition_key_index of bwould be 1.

• column_id refers to a column_id from the ducklake_column table.
• transform defines the type of a transform that is applied to the column value, e.g., year.

The table of supported transforms is as follows.

Transform Source type(s) Description Result type

identity Any Source value, unmodified Source
type

year date, timestamp, timestamptz, timestamp_s,
timestamp_ms, timestamp_ns

Extract a date or timestamp year, as years
from 1970

int64

month date, timestamp, timestamptz, timestamp_s,
timestamp_ms, timestamp_ns

Extract a date or timestampmonth, as
months from 1970‑01‑01

int64

day date, timestamp, timestamptz, timestamp_s,
timestamp_ms, timestamp_ns

Extract a date or timestamp day, as days
from 1970‑01‑01

int64

31

DuckLake Documentation

Transform Source type(s) Description Result type

hour timestamp, timestamptz, timestamp_s,
timestamp_ms, timestamp_ns

Extract a timestamp hour, as hours from
1970‑01‑01 00:00:00

int64

ducklake_partition_info

Column name Column type

partition_id BIGINT
table_id BIGINT
begin_snapshot BIGINT
end_snapshot BIGINT

• partition_id is a numeric identifier for a partition. partition_id is incremented from next_catalog_id in the duck-
lake_snapshot table.

• table_id refers to a table_id from the ducklake_table table.
• begin_snapshot refers to a snapshot_id from the ducklake_snapshot table. The partition is valid starting with this snap‑
shot id.

• end_snapshot refers to asnapshot_id from theducklake_snapshot table. The partition is valid up to but not including this
snapshot id. If end_snapshot is NULL, the partition is currently valid.

ducklake_schema

This table defines valid schemas.

Column name Column type

schema_id BIGINT Primary key

schema_uuid UUID
begin_snapshot BIGINT
end_snapshot BIGINT
schema_name VARCHAR
path VARCHAR
path_is_relative BOOLEAN

• schema_id is the numeric identifier of the schema. schema_id is incremented from next_catalog_id in the ducklake_
snapshot table.

• schema_uuid is a UUID that gives a persistent identifier for this schema. The UUID is stored here for compatibility with existing
lakehouse formats.

• begin_snapshot refers toasnapshot_id fromtheducklake_snapshot table. Theschemaexists startingwith this snapshot
id.

• end_snapshot refers to a snapshot_id from the ducklake_snapshot table. The schema exists up to but not including this
snapshot id. If end_snapshot is NULL, the schema is currently valid.

• schema_name is the name of the schema, e.g., my_schema.
• path is the data_path of the schema.
• path_is_relativewhether the path is relative to the data_path of the catalog (true) or an absolute path (false).

32

DuckLake Documentation

ducklake_schema_versions

This table contains the schema versions for a range of snapshots. It is necessary to compact files with different schemas.

Column name Column type

begin_snapshot BIGINT
schema_version BIGINT

• begin_snapshot refers to a snapshot_id in the ducklake_snapshot table.
• schema_version refers to the schema_version of a ducklake_snapshot.

ducklake_snapshot

This table contains the valid snapshots in a DuckLake.

Column name Column type

snapshot_id BIGINT Primary key

snapshot_time TIMESTAMP
schema_version BIGINT
next_catalog_id BIGINT
next_file_id BIGINT

• snapshot_id is the continuously increasing numeric identifier of the snapshot. It is a primary key and is referred to by various
other tables.

• snapshot_time is the timestamp at which the snapshot was created.
• schema_version is a continuously increasing number that is incremented whenever the schema is changed, e.g., by creating a
table. This allows for caching of schema information if only data is changed.

• next_catalog_id is a continuously increasing number that describes the next identifier for schemas, tables, views, partitions,
and column namemappings. This is only changed if one of those entries is created, i.e., the schema is changing.

• next_file_id is a continuously increasing number that contains the next id for a data or deletion file to be added. It is only
changed if data is being added or deleted, i.e., not for schema changes.

ducklake_snapshot_changes

This table lists changes that happened in a snapshot for easier conflict detection.

Column name Column type Description

snapshot_id BIGINT Primary key

changes_made VARCHAR List of changes in snapshot

author VARCHAR Author of the snapshot

commit_message VARCHAR Commit message

commit_extra_info VARCHAR Extra information regarding the commit

The ducklake_snapshot_changes table contains a summary of changes made by a snapshot. This table is used during Conflict
Resolution to quickly find out if two snapshots have conflicting changesets.

33

DuckLake Documentation

• snapshot_id refers to a snapshot_id from the ducklake_snapshot table.
• changes_made is a comma‑separated list of high‑level changes made by the snapshot. The values that are contained in this list
have the following format:

– created_schema:<SCHEMA_NAME> – the snapshot created a schema with the given name.
– created_table:<TABLE_NAME> – the snapshot created a table with the given name.
– created_view:<VIEW_NAME> – the snapshot created a view with the given name.
– inserted_into_table:<TABLE_ID> – the snapshot inserted data into the given table.
– deleted_from_table:<TABLE_ID> – the snapshot deleted data from the given table.
– compacted_table:<TABLE_ID> – the snapshot run a compaction operation on the given table.
– dropped_schema:<SCHEMA_ID> – the snapshot dropped the given schema.
– dropped_table:<TABLE_ID> – the snapshot dropped the given table.
– dropped_view:<VIEW_ID> – the snapshot dropped the given view.
– altered_table:<TABLE_ID> – the snapshot altered the given table.
– altered_view:<VIEW_ID> – the snapshot altered the given view.

Names are written in quoted‑format using SQL‑style escapes, i.e., the name this "table" contains quotes is written as
"this ""table"" contains quotes".

ducklake_table

This table describes tables. Inception!

Column name Column type

table_id BIGINT
table_uuid UUID
begin_snapshot BIGINT
end_snapshot BIGINT
schema_id BIGINT
table_name VARCHAR
path VARCHAR
path_is_relative BOOLEAN

• table_id is the numeric identifier of the table. table_id is incremented from next_catalog_id in the ducklake_
snapshot table.

• table_uuid is a UUID that gives a persistent identifier for this table. The UUID is stored here for compatibility with existing lake‑
house formats.

• begin_snapshot refers to a snapshot_id from the ducklake_snapshot table. The table exists starting with this snapshot
id.

• end_snapshot refers to a snapshot_id from the ducklake_snapshot table. The table exists up to but not including this
snapshot id. If end_snapshot is NULL, the table is currently valid.

• schema_id refers to a schema_id from the ducklake_schema table.
• table_name is the name of the table, e.g., my_table.
• path is the data_path of the table.
• path_is_relativewhether the path is relative to the path of the schema (true) or an absolute path (false).

ducklake_table_column_stats

This table contains column‑level statistics for an entire table.

34

DuckLake Documentation

Column name Column type

table_id BIGINT
column_id BIGINT
contains_null BOOLEAN
contains_nan BOOLEAN
min_value VARCHAR
max_value VARCHAR
extra_stats VARCHAR

• table_id refers to a table_id from the ducklake_table table.
• column_id refers to a column_id from the ducklake_column table.
• contains_null is a flag whether the column contains any NULL values.
• contains_nan is a flag whether the column contains any NaN values. This is only relevant for floating‑point types.
• min_value contains the minimum value for the column, encoded as a string. This does not have to be exact but has to be a lower
bound. The value has to be cast to the actual type for accurate comparison, e.g., on integer types.

• max_value contains themaximumvalue for the column, encoded as a string. This does not have to be exact but has to be an upper
bound. The value has to be cast to the actual type for accurate comparison, e.g., on integer types.

• extra_stats contains different statistics from specific types such as geometry types.

ducklake_table_stats

This table contains table‑level statistics.

Column name Column type

table_id BIGINT
record_count BIGINT
next_row_id BIGINT
file_size_bytes BIGINT

• table_id refers to a table_id from the ducklake_table table.
• record_count is the total amount of rows in the table. This can be approximate.
• next_row_id is the row id for newly inserted rows. Used for row lineage tracking.
• file_size_bytes is the total file size of all data files in the table. This can be approximate.

ducklake_tag

Schemas, tables, and views, etc. can have tags, those are declared in this table.

Column name Column type

object_id BIGINT
begin_snapshot BIGINT
end_snapshot BIGINT
key VARCHAR

35

DuckLake Documentation

Column name Column type

value VARCHAR

• object_id refers to a schema_id, table_id, etc. from various tables above.
• begin_snapshot refers to a snapshot_id from the ducklake_snapshot table. The tag is valid starting with this snapshot
id.

• end_snapshot refers to a snapshot_id from the ducklake_snapshot table. The tag is valid up to but not including this
snapshot id. If end_snapshot is NULL, the tag is currently valid.

• key is an arbitrary key string. The key can't be NULL.
• value is the arbitrary value string.

ducklake_view

This table describes SQL‑style VIEW definitions.

Column name Column type

view_id BIGINT
view_uuid UUID
begin_snapshot BIGINT
end_snapshot BIGINT
schema_id BIGINT
view_name VARCHAR
dialect VARCHAR
sql VARCHAR
column_aliases VARCHAR

• view_id is the numeric identifier of the view. view_id is incremented from next_catalog_id in the ducklake_snapshot
table.

• view_uuid is a UUID that gives a persistent identifier for this view. TheUUID is stored here for compatibilitywith existing lakehouse
formats.

• begin_snapshot refers to a snapshot_id from the ducklake_snapshot table. The view exists starting with this snapshot
id.

• end_snapshot refers to a snapshot_id from the ducklake_snapshot table. The view exists up to but not including this
snapshot id. If end_snapshot is NULL, the view is currently valid.

• schema_id refers to a schema_id from the ducklake_schema table.
• view_name is the name of the view, e.g., my_view.
• dialect is the SQL dialect of the view definition, e.g., duckdb.
• sql is the SQL string that defines the view, e.g., SELECT * FROM my_table.
• column_aliases contains a possible rename of the view columns. Can be NULL if no rename is set.

36

DuckLake Documentation

DuckDB Extension

37

Introduction

In DuckDB, DuckLake is supported through the ducklake extension.

Installation

Install the latest stable DuckDB. (The ducklake extension requires DuckDB v1.3.0 ”Ossivalis” or later.)

INSTALL ducklake;

Configuration

To use DuckLake, you need to make two decisions: which metadata catalog database you want to use and where you want to store those
files. In the simplest case, you use a local DuckDB file for the metadata catalog and a local folder on your computer for file storage.

Creating a New Database

DuckLake databases are created by simply starting to use them with the ATTACH statement. In the simplest case, you can create a local,
DuckDB‑backed DuckLake like so:

ATTACH 'ducklake:my_ducklake.ducklake' AS my_ducklake;
USE my_ducklake;

This will create a file my_ducklake.ducklake, which is a DuckDB database with the DuckLake schema.

We also use USE so we don't have to prefix all table names with my_ducklake. Once data is inserted, this will also create a folder my_
ducklake.ducklake.files in the same directory, where Parquet files are stored.

If you would like to use another directory, you can specify this in the DATA_PATH parameter for ATTACH:

ATTACH 'ducklake:my_other_ducklake.ducklake' AS my_other_ducklake (DATA_PATH 'some/other/path/');
USE ...;

The path is stored in the DuckLake metadata and does not have to be specified again to attach to an existing DuckLake catalog.

Both DATA_PATH and the database file path should be relative paths (e.g., ./some/path/ or some/path/). Moreover, for
database creation the path needs to exist already, i.e., ATTACH 'ducklake:db/my_ducklake.ducklake' AS my_
ducklake;where db needs to be an existing directory.

Attaching an Existing Database

Attaching to an existing database also uses the ATTACH syntax. For example, to re‑connect to the example from the previous section in a
new DuckDB session, we can just type:

ATTACH 'ducklake:my_ducklake.ducklake' AS my_ducklake;
USE my_ducklake;

39

https://duckdb.org/docs/stable/core_extensions/ducklake
https://duckdb.org/docs/installation/
https://duckdb.org/docs/stable/sql/statements/attach#attach

DuckLake Documentation

Using DuckLake

DuckLake is used just like any other DuckDB database. You can create schemas and tables, insert data, update data, delete data, modify
table schemas, etc.

Note that – similarly to other data lake and lakehouse formats – the DuckLake format does not support indexes, primary keys, foreign keys,
and UNIQUE or CHECK constraints.

Don't forget to either specify the database name of the DuckLake explicitly or use USE. Otherwise youmight inadvertently use the tempo‑
rary, in‑memory database.

Example

Let's observe what happens in DuckLake when we interact with a dataset. We will use the Netherlands train traffic dataset here.

We use the example DuckLake from above:

ATTACH 'ducklake:my_ducklake.ducklake' AS my_ducklake;
USE my_ducklake;

Let's now import the dataset into a new table:

CREATE TABLE nl_train_stations AS
FROM 'https://blobs.duckdb.org/nl_stations.csv';

Now let's peek behind the curtains. The data was just read into a Parquet file, which we can also just query.

FROM glob('my_ducklake.ducklake.files/**/*');
FROM 'my_ducklake.ducklake.files/**/*.parquet' LIMIT 10;

But now let's change some things around. We're really unhappy with the old name of the ”Amsterdam Bijlmer ArenA” station now that the
stadium has been renamed to ”Johan Cruijff ArenA” and everyone here loves Johan. So let's change that.

UPDATE nl_train_stations
SET name_long = 'Johan Cruijff ArenA'
WHERE code = 'ASB';

Poof, it's changed. We can confirm:

SELECT name_long
FROM nl_train_stations
WHERE code = 'ASB';

In the background, more files have appeared:

FROM glob('my_ducklake.ducklake.files/**/*');

We now see three files. The original data file, the rows that were deleted, and the rows that were inserted. Like most systems, DuckLake
models updates as deletes followed by inserts. The deletes are just a Parquet file, we can query it:

FROM 'my_ducklake.ducklake.files/**/ducklake-*-delete.parquet';

The file should contain a single row that marks row 29 as deleted. A new file has appeared that contains the new values for this row.

There are now three snapshots, the table creation, data insertion, and the update. We can query that using thesnapshots() function:

FROM my_ducklake.snapshots();

And we can query this table at each point:

SELECT name_long
FROM nl_train_stations AT (VERSION => 1)
WHERE code = 'ASB';

40

https://duckdb.org/2024/05/31/analyzing-railway-traffic-in-the-netherlands
https://en.wikipedia.org/wiki/Johan_Cruyff

DuckLake Documentation

SELECT name_long
FROM nl_train_stations AT (VERSION => 2)
WHERE code = 'ASB';

Time travel finally achieved!

Detaching from a DuckLake

To detach from a DuckLake, make sure that your DuckLake is not your default database, then use the DETACH statement:

USE memory;
DETACH my_ducklake;

Using DuckLake from a Client

DuckDB works with any DuckDB client that supports DuckDB version 1.3.0.

41

https://duckdb.org/docs/stable/sql/statements/attach#detach
https://duckdb.org/docs/stable/clients/overview

DuckLake Documentation

42

Usage

Connecting

To use DuckLake, youmust first either connect to an existing DuckLake, or create a new DuckLake. The ATTACH command can be used to
select the DuckLake instance to connect to. In theATTACH command, youmust specify the catalog database and the data storage location.
When attaching, a new DuckLake is automatically created if none exists in the specified catalog database.

Note that the data storage location only has to be specified when creating a new DuckLake. When connecting to an existing DuckLake, the
data storage location is loaded from the catalog database.

ATTACH 'ducklake:<metadata_storage_location>' (DATA_PATH '<data_storage_location>');

In addition, DuckLake connection parameters can also be stored in secrets.

ATTACH 'ducklake:<secret_name>';

Examples

Connect to DuckLake, reading the configuration from the default (unnamed) secret:

ATTACH 'ducklake:';

Connect to DuckLake, reading the configuration from the secret named my_secret:

ATTACH 'ducklake:my_secret';

Use a DuckDB database duckdb_database.ducklake as the catalog database with the data path defaulting to duckdb_
database.ducklake.files:

ATTACH 'ducklake:duckdb_database.ducklake';

UseaDuckDBdatabaseduckdb_database.ducklakeas the catalogdatabasewith thedatapathexplicitly specifiedas themy_files
directory:

ATTACH 'ducklake:duckdb_database.ducklake' (DATA_PATH 'my_files/');

Use a PostgreSQL database as the catalog database and an S3 path as the data path:

ATTACH 'ducklake:postgres:dbname=postgres' (DATA_PATH 's3://my-bucket/my-data/');

Connect to DuckLake in read‑only mode:

ATTACH 'ducklake:postgres:dbname=postgres' (READ_ONLY);

It is also possible to override the data path for a particular connection. This will not change the value of the data_path stored in the
DuckLake metadata, but it will override it for the current connection allowing data to be stored in a different path.

ATTACH 'ducklake:duckdb_database.ducklake' (DATA_PATH 'other_data_path/', OVERRIDE_DATA_PATH true);

If OVERRIDE_DATA_PATH is used, data under the original DATA_PATH will not be able to be queried in the current connection.
This behavior may be changed in the future to allow to query data in a catalog regardless of the current write DATA_PATH.

43

https://duckdb.org/docs/stable/configuration/secrets_manager

DuckLake Documentation

Parameters

The following parameters are supported for ATTACH:

Name Description Default

CREATE_IF_NOT_
EXISTS

Creates a new DuckLake if the specified one does not already
exist

true

DATA_INLINING_
ROW_LIMIT

The number of rows for which data inlining is used 0

DATA_PATH The storage location of the data files <metadata_file>.files for DuckDB
files, required otherwise

ENCRYPTED Whether or not data is stored encrypted false
META_<PARAMETER_
NAME>

Pass <PARAMETER_NAME> to the catalog server

METADATA_CATALOG The name of the attached catalog database __ducklake_metadata_<ducklake_
name>

METADATA_
PARAMETERS

Map of parameters to pass to the catalog server {}

METADATA_PATH The connection string for connecting to themetadata catalog

METADATA_SCHEMA The schema in the catalog server in which to store the
DuckLake tables

main

MIGRATE_IF_
REQUIRED

Migrates the DuckLake schema if required true

OVERRIDE_DATA_
PATH

If the path provided in data_path differs from the stored
path and this option is set to true, the path is overridden

true

SNAPSHOT_TIME If provided, connect to DuckLake at a snapshot at a specified
point in time

SNAPSHOT_VERSION If provided, connect to DuckLake at a specified snapshot id

In addition, any parameters that are prefixedwithMETA_ are passed to the catalog used to store themetadata. The supported parameters
depend on the metadata catalog that is used. For example, postgres supports the SECRET parameter. By using the META_SECRET
parameter we can pass this parameter to the PostgreSQL instance.

Secrets

Instead of configuring the connection using ATTACH, secrets can be created that contain all required information for setting up a con‑
nection. Secrets support the same list of parameters as ATTACH, in addition to the METADATA_PATH and METADATA_PARAMETERS
parameters.

Name Description Default

METADATA_PATH The connection string for connecting to the metadata

METADATA_PARAMETERS Map of parameters to pass to the catalog server {}

-- Default (unnamed) secret
CREATE SECRET (

TYPE ducklake,

44

DuckLake Documentation

METADATA_PATH '<metadata.duckdb>',
DATA_PATH '<metadata_files/>'

);

ATTACH 'ducklake:' AS my_ducklake;

-- Named secrets
CREATE SECRET <my_secret> (

TYPE ducklake,
METADATA_PATH '',
DATA_PATH 's3://<my-s3-bucket>/',
METADATA_PARAMETERS MAP {'TYPE': 'postgres', 'SECRET': 'postgres_secret'}

);
ATTACH 'ducklake:<my_secret>' AS my_ducklake;

To persist secrets, use the CREATE PERSISTENT SECRET statement.

Choosing a Catalog Database

Youmay choose different catalog databases for your DuckLake. The choice depends on several factors, including whether you need to use
multiple clients, which database systems are available in your organization, etc.

On the technical side, consider the following:

• If you would like to perform local data warehousing with a single client, use DuckDB as the catalog database.
• If you would like to perform local data warehousing usingmultiple local clients, use SQLite as the catalog database.
• If you would like to operate amulti‑user lakehouse with potentially remote clients, choose a transactional client‑server database
system as the catalog database: MySQL or PostgreSQL.

DuckDB

DuckDB can, of course, natively connect to DuckDB database files. So, to get started, you only need to install theducklake extension and
attach to your DuckLake:

INSTALL ducklake;

ATTACH 'ducklake:metadata.ducklake' AS my_ducklake;
USE my_ducklake;

Note that if you are using DuckDB as your catalog database, you're limited to a single client.

PostgreSQL

DuckDB can interact with a PostgreSQL database using the postgres extension. Install the ducklake and the postgres extension,
and attach to your DuckLake as follows:

INSTALL ducklake;
INSTALL postgres;

-- Make sure that the database `ducklake_catalog` exists in PostgreSQL.
ATTACH 'ducklake:postgres:dbname=ducklake_catalog host=localhost' AS my_ducklake

(DATA_PATH 'data_files/');
USE my_ducklake;

For details on how to configure the connection, see the postgres extension's documentation.

The ducklake and postgresql extensions require PostgreSQL 12 or newer.

45

https://duckdb.org/docs/stable/configuration/secrets_manager#persistent-secrets
https://duckdb.org/docs/stable/core_extensions/ducklake
https://duckdb.org/docs/stable/core_extensions/postgres
https://duckdb.org/docs/stable/core_extensions/postgres#configuration

DuckLake Documentation

SQLite

DuckDB can read and write a SQLite database file using the sqlite extension. Install the ducklake and the sqlite extension, and
attach to your DuckLake as follows:

INSTALL ducklake;
INSTALL sqlite;

ATTACH 'ducklake:sqlite:metadata.sqlite' AS my_ducklake
(DATA_PATH 'data_files/');

USE my_ducklake;

WhileSQLitedoesn't allowconcurrent readsandwrites, itsdefaultmode is toATTACHandDETACH for everyquery, togetherwithproviding
a “retry time‑out” for queries when a write‑lock is encountered. This allows a reasonable amount of multi‑processing support (effectively
hiding the single‑writer model).

MySQL

Warning. There are a number of known issues with MySQL as a catalog for DuckLake. This is due to some limitations regarding the
DuckDB MySQL connector. We therefore do not recommend to use MySQL as a catalog for DuckLake.

DuckDB can interact with a MySQL database using the mysql extension. Install the ducklake and the mysql extension, and attach to
your DuckLake as follows:

INSTALL ducklake;
INSTALL mysql;

-- Make sure that the database `ducklake_catalog` exists in MySQL
ATTACH 'ducklake:mysql:db=ducklake_catalog host=localhost' AS my_ducklake

(DATA_PATH 'data_files/');
USE my_ducklake;

For details on how to configure the connection, see the mysql extension's documentation.

Using the ducklake and mysql extensions requires MySQL 8 or newer.

Choosing Storage

DuckLake as a concept will never change existing files, neither by changing existing content nor by appending to existing files. This greatly
reduces the consistency requirements of file systems and greatly simplifies caching.

The DuckDB ducklake extension can work with any file system backend that DuckDB supports. This currently includes:

• local files and folders
• cloud object store like

– AWS S3 and compatible (e.g., Cloudflare R2, Hetzner Object Storage, etc.)
– Google Cloud Storage
– Azure Blob Store

• virtual network attached file systems

– NFS
– SMB
– FUSE
– Python fsspec file systems
– ...

When choosing storage, it's important to consider the following factors

46

https://duckdb.org/docs/stable/core_extensions/sqlite
https://duckdb.org/docs/stable/core_extensions/mysql
https://duckdb.org/docs/stable/core_extensions/mysql#configuration
https://duckdb.org/docs/stable/core_extensions/httpfs/s3api
https://www.cloudflare.com/developer-platform/products/r2/
https://www.hetzner.com/storage/object-storage/
https://duckdb.org/docs/stable/guides/network_cloud_storage/gcs_import
https://duckdb.org/docs/stable/core_extensions/azure
https://en.wikipedia.org/wiki/Network_File_System
https://en.wikipedia.org/wiki/Server_Message_Block
https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://duckdb.org/docs/stable/guides/python/filesystems

DuckLake Documentation

• access latency and data transfer throughput, a cloud further away will be accessible to everyone but have a higher latency. local files
are very fast, but not accessible to anyone else. A compromise might be a site‑local storage server.

• scalability and cost, anobject store is quite scalable, but potentially charges for data transfer. A local servermight not incur significant
operating expenses, but might struggle serving thousands of clients.

It might also be interesting to use DuckLake encryption when choosing external cloud storage.

Snapshots

Snapshots represent commitsmade to DuckLake. Every snapshot performs a set of changes that alter the state of the database. Snapshots
can create tables, insert or delete data, and alter schemas.

Changes can only be made to DuckLake using snapshots. Every set of changes must be accompanied by a snapshot.

Listing Snapshots

The set of snapshots can be queried using the snapshots function. This returns a list of all snapshots and their changesets.

ATTACH 'ducklake:snapshot_test.duckdb' AS snapshot_test;
SELECT * FROM snapshot_test.snapshots();

snapshot_
id snapshot_time

schema_
version changes author

commit_
message

commit_extra_
info

0 2025‑05‑26
17:03:37.746+00

0 {schemas_
created=[main]}

NULL NULL NULL

1 2025‑05‑26
17:03:38.66+00

1 {tables_
created=[main.tbl]}

NULL NULL NULL

2 2025‑05‑26
17:03:38.748+00

1 {tables_inserted_into=[1]} NULL NULL NULL

3 2025‑05‑26
17:03:39.788+00

1 {tables_deleted_from=[1]} NULL NULL NULL

It is also possible to retrieve the latest snapshot id directly with a function.

FROM snapshot_test.current_snapshot();

id

3

The DuckLake extension also provides a function to get the latest committed snapshot for an existing open connection. This may be useful
whenmultiple connections are updating the same target.

FROM snapshot_test.last_committed_snapshot();

Which would return the following for the current connection:

id

3

47

DuckLake Documentation

But if a new connection is open, it will return:

id

NULL

Adding a Commit Message to a Snapshot

An author and commit message can also be added in the context of a transaction. Optionally, you can also add some extra information.

CREATE TABLE ducklake.people (a INTEGER, b VARCHAR);

-- Begin Transaction
BEGIN;
INSERT INTO ducklake.people VALUES (1, 'pedro');
CALL ducklake.set_commit_message('Pedro', 'Inserting myself', extra_info => '{''foo'': 7, ''bar'': 10}');
COMMIT;
-- End transaction

snapshot_
id snapshot_time

schema_
version changes author

commit_
message commit_extra_info

0 2025‑08‑18
13:10:49.636+02

0 {schemas_
created=[main]}

NULL NULL NULL

1 2025‑08‑18
13:24:15.472+02

1 {tables_
created=[main.t1]}

NULL NULL NULL

2 2025‑08‑18
13:25:24.423+02

2 {tables_
created=[main.people]}

NULL NULL NULL

3 2025‑08‑18
13:26:06.38+02

2 {tables_inserted_
into=[2]}

Pedro Inserting
myself

{'foo':7, 'bar':10}

Schema Evolution

DuckLake supports the evolution of the schemas of tables without requiring any data files to be rewritten. The schema of a table can be
changed using the ALTER TABLE statement. The following statements are supported:

Adding Columns / Fields

To add a new column of type INTEGER, with default value NULL, use:

ALTER TABLE tbl ADD COLUMN new_column INTEGER;

To add a new column with an explicit default value, use:

ALTER TABLE tbl ADD COLUMN new_column VARCHAR DEFAULT 'my_default';

Fields can be added to columns of typestruct. The path to thestruct columnmust be specified, followed by the name of the new field
and the type of the new field.

-- Add a new field of type INTEGER, with default value NULL
ALTER TABLE tbl ADD COLUMN nested_column.new_field INTEGER;

48

DuckLake Documentation

Dropping Columns / Fields

To drop the top‑level column new_column from the table, use:

ALTER TABLE tbl DROP COLUMN new_column;

Fields can be dropped by specifying the full path to the field. For example, to drop the field new_field from the struct column nested_
column, use:

ALTER TABLE tbl DROP COLUMN nested_column.new_field;

Renaming Columns / Fields

To rename the top‑level column new_column to new_name, use:

ALTER TABLE tbl RENAME new_column TO new_name;

Fields can be renamed by specifying the full path to the field. For example, to rename the field new_field within the struct column
nested_column to new_name:

ALTER TABLE tbl RENAME nested_column.new_field TO new_name;

Renaming Tables

To rename the table tbl to tbl_new_name, use:

ALTER TABLE tbl RENAME TO tbl_new_name;

Type Promotion

The types of columns can be changed.

To change the type of col1 to BIGINT, use:

ALTER TABLE tbl ALTER col1 SET TYPE BIGINT;

To change the type of field new_fieldwithin the struct column nested_column to BIGINT:

ALTER TABLE tbl ALTER nested_column.new_field SET TYPE BIGINT;

Note that not all type changes are valid. Only type promotions are supported. Type promotions must be lossless. As such, valid type
promotions are promoting from a narrower type (int32) to a wider type (int64).

The full set of valid type promotions is as follows:

Source Target

int8 int16, int32, int64
int16 int32, int64
int32 int64
uint8 uint16, uint32, uint64
uint16 uint32, uint64
uint32 uint64
float32 float64

49

DuckLake Documentation

Field Identifiers

Columns are tracked using field identifiers. These identifiers are stored in the column_id field of the ducklake_column table. The
identifiers are also written to each of the data files. For Parquet files, these are written in the field_id field. These identifiers are used
to reconstruct the data of a table for a given snapshot.

When reading the data for a table, the schema together with the correct field identifiers is read from the ducklake_column table. Data
files can contain any number of columns that exist in that schema, and can also contain columns that do not exist in that schema.

• If we drop a column, previously written data files still contain the dropped column.
• If we add a column, previously written data files do not contain the new column.
• If we change the type of a column, previously written data files contain data for the column in the old type.

To reconstruct the correct table data for a given snapshot, wemust perform field id remapping. This is done as follows:

• Data for a column is read from the column with the corresponding field_id. The data types might not match in case of type
promotion. In this case, the values must be cast to the correct type of the column.

• Any column that has a field_id that exists in the data file but not in the table schemamust be ignored
• Any column that has a field_id that does not exist in the data file must be replaced with the initial_default value in the
ducklake_column table

Time Travel

In DuckLake, every snapshot represents a consistent state of the database. DuckLake keeps a record of all historic snapshots and their
changesets, unless compaction is triggered and historic snapshots are explicitly deleted.

Using time travel, it is possible to query the state of the database as of any recorded snapshot. The snapshot to query can be specified
either (1) using a timestamp, or (2) explicitly using a snapshot identifier. The snapshots function can be used to obtain a list of valid
snapshots for a given DuckLake database.

Examples

Query the table at a specific snapshot version.

SELECT * FROM tbl AT (VERSION => 3);

Query the table as it was last week.

SELECT * FROM tbl AT (TIMESTAMP => now() - INTERVAL '1 week');

Attach a DuckLake database at a specific snapshot version.

ATTACH 'ducklake:metadata.duckdb' (SNAPSHOT_VERSION 3);

Attach a DuckLake database as it was at a specific time.

ATTACH 'ducklake:metadata.duckdb' (SNAPSHOT_TIME '2025-05-26 00:00:00');

Upserting

Upserting is the combination of updating and inserting. In database operations this usually means do something to a record if it already
exists and do something else if it doesn't. Many databases support primary keys to assist with this behavior. This is also the case with
DuckDB, which allows for the syntax INSERT INTO ... ON CONFLICT.

DuckLake, on the other hand, does not support primary keys. However, the MERGE INTO syntax provides the same upserting functional‑
ity.

50

https://github.com/apache/parquet-format/blob/f1fd3b9171aec7a7f0106e0203caef88d17dda82/src/main/thrift/parquet.thrift#L550
https://duckdb.org/docs/stable/sql/statements/insert#on-conflict-clause

DuckLake Documentation

Syntax

MERGE INTO target_table [target_alias]
USING source_table [source_alias]
ON (target_table.field = source_table.field) -- USING (field)
WHEN MATCHED THEN UPDATE [SET] | DELETE
WHEN NOT MATCHED THEN INSERT;

Usage

First, let's create a simple table.

CREATE TABLE people (id INTEGER, name VARCHAR, salary FLOAT);
INSERT INTO people VALUES (1, 'John', 92_000.0), (2, 'Anna', 100_000.0);

The simplest upsert would be updating or inserting a whole row.

MERGE INTO people
USING (

SELECT
unnest([3, 1]) AS id,
unnest(['Sarah', 'John']) AS name,
unnest([95_000.0, 105_000.0]) AS salary

) AS upserts
ON (upserts.id = people.id)
WHEN MATCHED THEN UPDATE
WHEN NOT MATCHED THEN INSERT;

FROM people;

id name salary

2 Anna 100000.0

1 John 105000.0

3 Sarah 95000.0

In the previous example we are updating the whole row if idmatches. However, it is also a common pattern to receive a change set with
some keys and the changed value. This is a good use for SET.

MERGE INTO people
USING (

SELECT
1 AS id,
98_000.0 AS salary

) AS salary_updates
ON (salary_updates.id = people.id)
WHEN MATCHED THEN UPDATE SET salary = salary_updates.salary;

FROM people;

id name salary

2 Anna 100000.0

3 Sarah 95000.0

1 John 98000.0

51

DuckLake Documentation

id name salary

Another common pattern is to receive a delete set of rows, which may only contain ids of rows to be deleted.

MERGE INTO people
USING (

SELECT
1 AS id

) AS deletes
ON (deletes.id = people.id)
WHEN MATCHED THEN DELETE;

FROM people;

id name salary

2 Anna 100000.0

3 Sarah 95000.0

MERGE INTO also supports more complex conditions, for example for a given delete set we can decide to only remove rows that contain
a salary greater than or equal to a certain amount.

MERGE INTO people
USING (

SELECT
unnest([3, 2]) AS id

) AS deletes
ON (deletes.id = people.id)
WHEN MATCHED AND people.salary >= 100_000.0 THEN DELETE;

FROM people;

id name salary

3 Sarah 95000.0

Unsupported Behavior

Multiple UPDATE or DELETE operators are not currently supported. The following querywould not work:

MERGE INTO people
USING (

SELECT
unnest([3, 1]) AS id,
unnest(['Sarah', 'John']) AS name,
unnest([95_000.0, 105_000.0]) AS salary

) AS upserts
ON (upserts.id = people.id)
WHEN MATCHED AND people.salary < 100_000.0 THEN UPDATE
-- Second update or delete condition
WHEN MATCHED AND people.salary > 100_000.0 THEN DELETE
WHEN NOT MATCHED THEN INSERT;

Not implemented Error:
MERGE INTO with DuckLake only supports a single UPDATE/DELETE action currently

52

DuckLake Documentation

Configuration

ducklake Extension Configuration

The ducklake extension also allows for some configuration regarding retry mechanism for transaction conflicts.

Option List

Name Description Default

ducklake_max_retry_count Themaximum amount of retry attempts for a DuckLake transaction 10

ducklake_retry_wait_ms Time between retries in ms 100

ducklake_retry_backoff Backoff factor for exponentially increasing retry wait time 1.5

Setting Config Values

SET ducklake_max_retry_count = 100;
SET ducklake_retry_wait_ms = 100;
SET ducklake_retry_backoff = 2;

DuckLake Specific Configuration

DuckLake supports persistent and scoped configuration operations. These options can be set using the set_option function. The op‑
tions that have been set can be queried using the options function. Configuration is persisted in the ducklake_metadata table.

Option List

Name Description Default

data_inlining_row_
limit

Maximum amount of rows to inline in a single insert 0

parquet_compression Compression algorithm for Parquet files (uncompressed, snappy, gzip, zstd, brotli, lz4, lz4_
raw)

snappy

parquet_version Parquet format version (1 or 2) 1
parquet_compression_
level

Compression level for Parquet files 3

parquet_row_group_
size

Number of rows per row group in Parquet files 122880

parquet_row_group_
size_bytes

Number of bytes per row group in Parquet files

hive_file_pattern If partitioned data should be written in a Hive‑style folder structure true
target_file_size The target data file size for insertion and compaction operations 512MB
version DuckLake format version

created_by Tool used to write the DuckLake

data_path Path to data files

53

DuckLake Documentation

Name Description Default

require_commit_
message

If an explicit commit message is required for a snapshot commit. false

rewrite_delete_
threshold

Minimum fraction of data removed from a file before a rewrite is warranted (0...1) 0.95

delete_older_than How old unused files must be to be removed by cleanup functions

expire_older_than How old snapshots must be to be expired by default

compaction_schema Pre‑defined schema used as a default value for compaction functions

compaction_table Pre‑defined table used as a default value for compaction functions

encrypted Whether or not to encrypt Parquet files written to the data path false
per_thread_output Whether to create separate output files per thread during parallel insertion false

Setting Config Values

Set the global Parquet compression algorithm used when writing Parquet files:

CALL my_ducklake.set_option('parquet_compression', 'zstd');

Set the Parquet compression algorithm used for tables in a specific schema:

CALL my_ducklake.set_option('parquet_compression', 'zstd', schema => 'my_schema');

Set the Parquet compression algorithm used for a specific table:

CALL my_ducklake.set_option('parquet_compression', 'zstd', table_name => 'my_table');

See all options for the given attached DuckLake

FROM my_ducklake.options();

Scoping

Options can be set either globally, per‑schema or per‑table. The most specific scope that is set is always used for any given setting, i.e.,
settings are used in the following priority:

Priority Setting Scope

1 Table

2 Schema

3 Global

4 Default

Paths

DuckLake manages files stored in a separate storage location. The paths to the files are stored in the catalog server. Paths can be either
absolute or relative to their parent path. Whether or not a path is relative is stored in the path_is_relative column, alongside the
path. By default, all paths written by DuckLake are relative paths.

54

DuckLake Documentation

Path type Path location Parent path

File path ducklake_data_file / ducklake_delete_file Table path

Table path ducklake_table Schema path

Schema path ducklake_schema Data path

Data path ducklake_metadata

Default Path Structure

The rootdata_path is specified through thedata_pathparameterwhen creating a newDuckLake. When loading an existingDuckLake,
the data_path is loaded from the ducklake_metadata if not provided.

Schemas. When creating a schema, a schema path is set. By default, this path is the name of the schema for alphanumeric names
(<schema_name>/) – or <schema_uuid>/ otherwise. This path is set as relative to the root data_path.

Tables. When creating a table, a table path is set. By default, this path is the name of the table for alphanumeric names (<table_
name>>/) – or <table_uuid>/ otherwise. This path is set as relative to the path of the parent schema.

Files. When writing a new data or delete file to the table, a new file path is generated. For unpartitioned tables, this path is ducklake-
<uuid>.parquet – relative to the table path.

Partitioned Files. When writing data to a partitioned table, the files are by default written to directories in the Hive partitioning style.
Writing data in this manner is not required as the partition values are tracked in the catalog server itself.

This results in the following path structure:

main
├── unpartitioned_table
│ └── ducklake-<uuid>.parquet
└── partitioned_table

└── year=2025
└── ducklake-<uuid>.parquet

55

https://duckdb.org/docs/stable/data/partitioning/hive_partitioning#hive-partitioning

DuckLake Documentation

56

Maintenance

RecommendedMaintenance

Metadata Maintenance

Most operations performed by DuckLake happen in the catalog database. As such, themaintenance of themetadata server are handled by
the chosen catalog database. For example, when running PostgreSQL, it is likely sufficient to occasionally run VACUUM in order to ensure
the system stays performant.

Data File Maintenance

The data files that DuckLake writes to the data directory may require maintenance depending on how the insertions take place. When
snapshotswrite small batches of data at a timeanddata inlining is not used small Parquet fileswill bewritten to storage. It is recommended
to merge these Parquet files using the merge_adjacent_files function.

DuckLake also never deletes old data files. As old data remains accessible through time travel. Evenwhen a table is dropped, the data files
associated with that table are not deleted. In order to trigger a delete of these files, the snapshots that refer to that table must be expired
and files should be cleaned up.

If you have tables that are heavily deleted, it can be the case that you have a lot of delete files that will slow read performance. In this case,
we recommend you run a function to rewrite the deleted files.

If you need to run all of this operations periodically, then we recommend you use the CHECKPOINT statement.

Merge Adjacent Files

Unless data inlining is used, each insert to DuckLake writes data to a new Parquet file. If small insertions are performed, the Parquet files
that arewritten are small. These only hold a few rows. For performance reasons, it is generally recommended that Parquet files are at least
a fewmegabytes each.

DuckLake supports merging of files without needing to expire snapshots. This is supported due to the lightweight snapshots that can
refer to a part of a Parquet file. Effectively, we canmergemultiple Parquet files into a single Parquet file that holds data inserted bymultiple
snapshots. The data file is then setup so that the snapshots refer to only part of that Parquet file.

This preserves all of the original behavior – including time travel and data change feeds – for these snapshots. In effect, this manner of
compaction is completely transparent from a user perspective.

This compaction technique can be triggered using the merge_adjacent_files function. For example:

CALL ducklake_merge_adjacent_files('my_ducklake');

Or if you want to target a specific table within a schema:

CALL ducklake_merge_adjacent_files('my_ducklake', 't', schema => 'some_schema');

Calling this function does not immediately delete the old files. See the cleanup old files section on how to trigger a cleanup of these
files.

57

DuckLake Documentation

Expire Snapshots

DuckLake in normal operation never removes any data, even when tables are dropped or data is deleted. Due to time travel, the removed
data is still accessible.

Data can only be physically removed from DuckLake by expiring snapshots that refer to the old data. This can be done using the duck-
lake_expire_snapshots function.

Usage

The below command expires a snapshot with a specific snapshot id.

CALL ducklake_expire_snapshots('ducklake', versions => [2]);

The below command expires snapshots older than a week.

CALL ducklake_expire_snapshots('ducklake', older_than => now() - INTERVAL '1 week');

The below command performs a dry run, which only lists the snapshots that will be deleted, instead of actually deleting them.

CALL ducklake_expire_snapshots('ducklake', dry_run => true, older_than => now() - INTERVAL '1 week');

It is also possible to set a DuckLake option to expire snapshots that applies to the whole catalog.

CALL ducklake.set_option('expire_older_than', '1 month');

Cleaning Up Files

Note that expiring snapshots does not immediately delete files that are no longer referenced. See the cleanup old files section on how to
trigger a cleanup of these files.

Cleanup of Files

In DuckLake youmaywant to delete data files that are either a part of an expired snapshot or are simply not tracked by DuckLake anymore
(i.e., orphaned files).

Cleanup of Files from Expired Snapshots

When files are no longer required in DuckLake, due to e.g. snapshots being expired or files beingmerged, they are not immediately deleted.
The reason for this is that there might still be active queries that are scanning these files.

The files are instead added to the ducklake_files_scheduled_for_deletion table. These files can then be deleted at a later
point. It is generally safe to delete files that have been scheduled for deletion more than a few days ago, provided there are no read trans‑
actions that last that long. The files can be deleted using the ducklake_cleanup_old_files function.

Usage of the ducklake_cleanup_old_files Function

The below command deletes all files scheduled for deletion.

CALL ducklake_cleanup_old_files(
'ducklake',
cleanup_all => true

);

The below command deletes all files that were scheduled for deletion more than a week ago.

58

DuckLake Documentation

CALL ducklake_cleanup_old_files(
'ducklake',
older_than => now() - INTERVAL '1 week'

);

The below command performs a dry run, which only lists the files that will be deleted, instead of actually deleting them.

CALL ducklake_cleanup_old_files(
'ducklake',
dry_run => true,
older_than => now() - INTERVAL '1 week'

);

Cleanup of Orphaned Files

Orphan files are files that are untracked by the DuckLakemetadata catalog. Theymay appear due to, for example, a systems failure. Duck‑
Lake provides the ducklake_delete_orphaned_files function to delete these files.

Usage of the ducklake_delete_orphaned_files Function

The below command deletes all orphaned files.

CALL ducklake_delete_orphaned_files(
'ducklake',
cleanup_all => true

);

The below command deletes all files that are older than a specified time.

CALL ducklake_delete_orphaned_files(
'ducklake',
older_than => now() - INTERVAL '1 week'

);

The below command performs a dry run, which only lists the files that will be deleted, instead of actually deleting them.

CALL ducklake_delete_orphaned_files(
'ducklake',
dry_run => true,
older_than => now() - INTERVAL '1 week'

);

There is also a catalog‑level option available.

CALL ducklake.set_option('delete_older_than', '1 week');

Rewrite Heavily Deleted Files

DuckLake uses a merge‑on‑read strategy when data is deleted from a table. In short, this means that DuckLake uses a delete file which
contains a pointer to the deleted records on the original file. This makes deletes very efficient. However, for heavily deleted tables, read‑
ing performance will be hindered by this approach. To solve this problem, DuckLake exposes a function called ducklake_rewrite_
data_files that rewrites files that contain an amount of deletes bigger than a given threshold to a new file that contains non‑deleted
records. This files can then be further compacted with a ducklake_merge_adjacent_files operation. The default value for the
delete threshold is 0.95.

59

DuckLake Documentation

Usage

Apply to all tables in a catalog:

CALL ducklake_rewrite_data_files('my_ducklake');

Apply only to a specific table:

CALL ducklake_rewrite_data_files('my_ducklake', 't');

Provide a specific value for the delete threshold:

CALL ducklake_rewrite_data_files('my_ducklake', 't', delete_threshold => 0.5);

Set a specific threshold for the whole catalog:

CALL my_ducklake.set_option('rewrite_delete_threshold', 0.5);

Checkpoint

DuckLake provides the option to implement all the maintenance functions bundled in the CHECKPOINT statement. This statement will
run in order the following DuckLake functions:

• ducklake_flush_inlined_data
• ducklake_expire_snapshots
• ducklake_merge_adjacent_files
• ducklake_rewrite_data_files
• ducklake_cleanup_old_files
• ducklake_delete_orphaned_files

Usage

The CHECKPOINT statement takes the following global DuckLake options:

• rewrite_delete_threshold: A threshold that determines the minimum amount of data that must be removed from a file
before a rewrite is warranted (0...1). Used by ducklake_rewrite_data_files.

• delete_older_than: Howoldunused filesmustbe tobe removedby theducklake_delete_orphaned_filesandduck-
lake_cleanup_old_files cleanup functions.

• expire_older_than: How old snapshots must be, by default, to be expired by ducklake_expire_snapshots.
• compaction_schema: Pre‑defined schema used as a default value for the following compaction functions ducklake_flush_
inlined_data,ducklake_merge_adjacent_files, ducklake_rewrite_data_files, ducklake_delete_
orphaned_files.

• compaction_table: Pre‑defined table used as a default value for the following compaction functions ducklake_flush_
inlined_data,ducklake_merge_adjacent_files, ducklake_rewrite_data_files, ducklake_delete_
orphaned_files.

If this options are not provided via theducklake.set_option function,CHECKPOINTwill use the default valueswhen applicable and
will run a CHECKPOINT of the whole DuckLake.

CHECKPOINT;

60

Advanced Features

Constraints

DuckLake has limited support for constraints. The only constraint type that is currently supported is NOT NULL. It does not support
PRIMARY KEY, FOREIGN KEY, UNIQUE or CHECK constraints.

Examples

Define a column as not accepting NULL values using the NOT NULL constraint.

CREATE TABLE tbl (col INTEGER NOT NULL);

Add a NOT NULL constraint to an existing column of an existing table.

ALTER TABLE tbl ALTER col SET NOT NULL;

Drop a NOT NULL constraint from a table.

ALTER TABLE tbl ALTER col DROP NOT NULL;

Conflict Resolution

In DuckLake, snapshot identifiers are written in a sequential order. The first snapshot has snapshot_id 0, and subsequent snapshot
ids are monotonically increasing such that the second snapshot has id 1, etc. The sequential nature of snapshot identifiers is used to
detect conflicts between snapshots. Theducklake_snapshot table has aPRIMARY KEY constraint defined over thesnapshot_id
column.

When twoconnections try towrite toaducklake table, theywill try towritea snapshotwith the same identifier andoneof the transactions
will trigger a PRIMARY KEY constraint violation and fail to commit. When such a conflict occurs – we try to resolve the conflict. In many
cases, such as when both transactions are inserting data into a table, we can retry the commit without having to rewrite any actual files.
During conflict resolution, we query the ducklake_snapshot_changes table to figure out the high‑level set of changes that other
snapshots have made in the meantime.

• If there are no logical conflicts between the changes that the snapshots have made – we automatically retry the transaction in the
metadata catalog without rewriting any data files.

• If there are logical conflicts, we abort the transaction and instruct the user that conflicting changes have beenmade.

Logical Conflicts

Below is a list of logical conflicts based on the snapshot's changeset. Snapshots conflict when any of the following conflicts occur:

Schemas

• Both snapshots create a schema with the same name
• Both snapshots drop the same schema
• A snapshot tries to drop a schema in which another transaction created an entry

61

DuckLake Documentation

Tables / Views

• Both snapshots create a table or view with the same name in the same schema
• A snapshot tries to create a table or view in a schema that was dropped by another snapshot
• Both snapshots drop the same table or view
• A snapshot tries to alter a table or view that was dropped or altered by another snapshot

Data

• A snapshot tries to insert data into a table that was dropped or altered by another snapshot
• A snapshot tries to delete data from a table that was dropped, altered, deleted from or compacted by another snapshot

Compaction

• A snapshot tries to compact a table that was deleted from by another snapshot
• A snapshot tries to compact a table that was dropped by another snapshot

Data Change Feed

In addition to allowing you to query the state of the database at any point in time, DuckLake allows you to query the changes that were
made between any two snapshots. This can be done using the table_changes function.

Examples

Consider the following DuckLake instance:

ATTACH 'ducklake:changes.duckdb' AS db (DATA_PATH 'change_files/');
-- Snapshot 1
CREATE TABLE db.tbl (id INTEGER, val VARCHAR);
-- Snapshot 2
INSERT INTO db.tbl VALUES (1, 'Hello'), (2, 'DuckLake');
-- Snapshot 3
DELETE FROM db.tbl WHERE id = 1;
-- Snapshot 4
UPDATE db.tbl SET val = concat(val, val, val);

Changes Made by a Specific Snapshot

FROM db.table_changes('tbl', 2, 2);

snapshot_id rowid change_type id val

2 0 insert 1 Hello

2 1 insert 2 DuckLake

Changes Made between Multiple Snapshots

FROM db.table_changes('tbl', 3, 4)
ORDER BY snapshot_id;

62

DuckLake Documentation

snapshot_id rowid change_type id val

3 0 delete 1 Hello

4 1 update_preimage 2 DuckLake

4 1 update_postimage 2 DuckLakeDuckLakeDuckLake

Changes Made in the Last Week

FROM changes.table_changes('tbl', now() - INTERVAL '1 week', now());

table_changes

The table_changes function takes as input the table for which changes should be returned, and two bounds: the start snapshot and
the end snapshot (inclusive). The bounds can be given either as a snapshot id, or as a timestamp.

The result of the function is the set of changes, read using the table schema as of the end snapshot provided, and three extra columns:
snapshot_id, rowid and change_type.

Column Description

snapshot_id The snapshot which made the change

rowid The row identifier of the row which was changed

change_type insert, update_preimage, update_postimage or delete

Updates are split into two rows: the update_preimage and update_postimage. update_preimage is the row as it was prior to
the update operation. update_postimage is the row as it is after the update operation.

When the schemaof a table is altered, changes are read as of the schemaof the table as of the end snapshot. As such, if a column is dropped
in between the provided bounds, the dropped column is omitted from the entire result. If a column is added, any changes made to the
table prior to the addition of the column will have the column substituted with its default value.

Compaction

Compaction operations that expire snapshots can limit the change feed that can be read. For example, if deleted rows are removed as part
of compaction, these cannot be returned by the change feed anymore.

Data Inlining

Data inlining is currently experimental. It needs tobeenabledexplicitly and is only supported forDuckDBdatabases. Weareplanning
to improve support for this feature in the future.

When writing small changes to DuckLake, it can be wasteful to write each changeset to an individual Parquet file. DuckLake supports
directly writing small changes to the metadata using data inlining. Instead of writing a Parquet file to the data storage and then writing a
reference to that file in the metadata catalog, we directly write the rows to inlined data tables within the metadata catalog.

Data inliningmust be enabled explicitly using theDATA_INLINING_ROW_LIMIT attach parameter. When enabled, any inserts thatwrite
fewer than the given amount of rows are automatically written to inlined tables instead.

ATTACH 'ducklake:inlining.duckdb' (DATA_INLINING_ROW_LIMIT 10);

63

DuckLake Documentation

Inlined data behaves exactly the same as data written to Parquet files. The inlined data can be queried, updated and deleted, and the
schema of inlined data can bemodified. The only difference is that the inlined data lives in themetadata catalog, instead of in Parquet files
in the data path.

For example, when inserting a low number of rows, data is automatically inlined:

CREATE TABLE inlining.tbl (col INTEGER);
-- Inserting 3 rows, data is inlined
INSERT INTO inlining.tbl VALUES (1), (2), (3);
-- No Parquet files exist
SELECT count(*) FROM glob('inlining.duckdb.files/**');

┌──────────────┐
│ count_star() │
│ int64 │
├──────────────┤
│ 0 │
└──────────────┘

When inserting more data than the DATA_INLINING_ROW_LIMIT, inserts are automatically written to Parquet:

INSERT INTO inlining.tbl FROM range(100);
SELECT count(*) FROM glob('inlining.duckdb.files/**');

┌──────────────┐
│ count_star() │
│ int64 │
├──────────────┤
│ 1 │
└──────────────┘

Flushing Inlined Data

Inlined data can bemanually flushed to Parquet files by calling the ducklake_flush_inlined_data function.

Flush all inlined data in all schemas and tables:

CALL ducklake_flush_inlined_data('my_ducklake');

Flush inlined data only within a specific schema:

CALL ducklake_flush_inlined_data(
'my_ducklake',
schema_name => 'my_schema'

);

Flush inlined data for a specific table in the default main schema:

CALL ducklake_flush_inlined_data(
'my_ducklake',
table_name => 'my_table'

);

Flush inlined data for a specific table in a specific schema:

CALL ducklake_flush_inlined_data(
'my_ducklake',
schema_name => 'my_schema',
table_name => 'my_table'

);

64

DuckLake Documentation

Encryption

DuckLake supports an encryptedmode. In thismode, all files that arewritten to the data directory are encrypted using Parquet encryption.
In order to use this mode, the ENCRYPTED flag must be passed when initializing the DuckLake catalog:

ATTACH 'ducklake:encrypted.ducklake'
(DATA_PATH 'untrusted_location/', ENCRYPTED);

When enabled, all Parquet files that are written as part of DuckLake operations are automatically encrypted. The encryption keys for each
file are automatically generated by the systemwhen the files are written. New encryption keys are automatically generated for each write
operation – such that each file is encrypted using their own encryption key. The generated keys are stored in the catalog, in the encryp-
tion_key field of the ducklake_data_file table.

Whendata is read from the encrypted files, the keys are read from the catalog server and automatically used todecrypt the files. This allows
encrypted DuckLake databases to be interacted with in exactly the samemanner as unencrypted databases.

Partitioning

DuckLake tables can be partitioned by a user‑defined set of partition keys. When a DuckLake table has partitioning keys defined, any new
data is split up into separate data files along the partitioning keys. During query planning, the partitioning keys are used to prune which
files are scanned.

The partitioning keys defined on a table only affect new data written to the table. Previously written data will be kept partitioned by the
keys the table had when that data was written. This allows the partition layout of a table to evolve over‑time as needed.

The partitioning keys for a file are stored in DuckLake. These keys do not need to be necessarily stored within the files, or in the paths to
the files.

Examples

By default, DuckLake uses Hive partitioning. If you want to avoid this style of partitions, you can opt out via using CALL my_
ducklake.set_option('hive_file_pattern', false).

Set the partitioning keys of a table, such that new data added to the table is partitioned by these keys.

To partition on a column, use:

ALTER TABLE tbl SET PARTITIONED BY (part_key);

You can also partition using functions. For example, to partition based on the year/month of a timestamp, use:

ALTER TABLE tbl SET PARTITIONED BY (year(ts), month(ts));

Remove the partitioning keys of a table, such that new data added to the table is no longer partitioned.

ALTER TABLE tbl RESET PARTITIONED BY;

DuckLake supports the following partition clauses:

Transform Expression

identity col_name

year year(ts)

month month(ts)

day day(ts)

hour hour(ts)

65

https://parquet.apache.org/docs/file-format/data-pages/encryption/
https://duckdb.org/docs/stable/data/partitioning/hive_partitioning

DuckLake Documentation

Transactions

DuckLake has full support for ACID and offers snapshot isolation for all interactions with the database. All operations, including DDL state‑
ments such as CREATE TABLE or ALTER TABLE, have full transactional support. Transactions have all‑or‑nothing semantics and can
be composed of multiple changes that are made to the database.

The extension also provides some syntax to be able to manage transactions. This is explained in the DuckDB documentation. Basically it
comes down to this:

BEGIN TRANSACTION;
-- Some operation
-- Some other operation
COMMIT;
-- Or
ROLLBACK; -- ABORT will have the same behavior

In the context of DuckLake, one committed transaction (i.e., a BEGIN-COMMIT block) represents one snapshot.

If multiple transactions are being performed concurrently in one table, the ducklake extension has some default configurations for a
retry mechanism. This default configurations can be overridden.

Row Lineage

Every row created in DuckLake has a unique row identifier, which can be queried as the rowid virtual column. This identifier is assigned
whena row is first inserted into the system. The identifier is preservedwhen the row ismovedbetween files – for exampleaspart ofUPDATE
and compaction operations.

Therowid columncanbeused to trackwhether the additionof files actually introduces new rows intoDuckLake, orwhether theoperation
is simplymoving files around. This is used internally in the data change feed to differentiate between update operations and delete + insert
operations.

Views

Views can be created using the standard CREATE VIEW syntax. The views are stored in the metadata, in the ducklake_view table.

Examples

Create a view.

CREATE VIEW v1 AS SELECT * FROM tbl;

Comments

Comments can be added to tables, views and columns using the COMMENT ON syntax. The comments are stored in themetadata, and can
bemodified in a transactional manner.

Examples

Create a comment on a TABLE:

COMMENT ON TABLE test_table IS 'very nice table';

Create a comment on a COLUMN:

COMMENT ON COLUMN test_table.test_table_column IS 'very nice column';

66

https://en.wikipedia.org/wiki/ACID
https://duckdb.org/docs/stable/sql/statements/transactions
https://duckdb.org/docs/stable/sql/statements/create_view
https://duckdb.org/docs/stable/sql/statements/comment_on

Metadata

List Files

The ducklake_list_files function can be used to list the data files and corresponding delete files that belong to a given table, op‑
tionally for a given snapshot.

Usage

List all files:

FROM ducklake_list_files('catalog', 'table_name');

Get list of files at a specific snapshot version:

FROM ducklake_list_files('catalog', 'table_name', snapshot_version => 2);

Get list of files at a specific point in time:

FROM ducklake_list_files('catalog', 'table_name', snapshot_time => '2025-06-16 15:24:30');

Get list of files of a table in a specific schema:

FROM ducklake_list_files('catalog', 'table_name', schema => 'main');

Parameter Description Default

catalog Name of attached DuckLake catalog

table_name Name of table to fetch files from

schema Schema for the table main
snapshot_version If provided, fetch files for a given snapshot id

snapshot_time If provided, fetch files for a given timestamp

Result

The function returns the following result set.

column_name column_type

data_file VARCHAR

data_file_size_bytes UBIGINT

data_file_footer_size UBIGINT

data_file_encryption_key BLOB

delete_file VARCHAR

delete_file_size_bytes UBIGINT

67

DuckLake Documentation

column_name column_type

delete_file_footer_size UBIGINT

delete_file_encryption_key BLOB

• If the file has delete files, the corresponding delete file is returned, otherwise these fields are NULL.
• If the database is encrypted, the encryption key must be used to read the file.
• The footer_size refers to the Parquet footer size – this is optionally provided.

Adding Files

The ducklake_add_data_files function can be used to register existing data files as new files in DuckLake. The files are not copied
over – DuckLake is merely made aware of their existence, allowing them to be queried through DuckLake. Adding files in this manner
supports regular transactional semantics.

The ownership of the Parquet file is transferred to DuckLake. As such, compaction operations (such as those triggered through
merge_adjacent_files or expire_snapshots followed by cleanup_old_files) can cause the files to be deleted by
DuckLake.

Usage

Examples

Add the file people.parquet to the people table in my_ducklake:

CALL ducklake_add_data_files('my_ducklake', 'people', 'people.parquet');

Target a specific schema rather than the default main:

CALL ducklake_add_data_files('my_ducklake', 'people', 'people.parquet', schema => 'some_schema');

Add the file. Any columns that are present in the table but not in the file will have their default values used when reading:

CALL ducklake_add_data_files('my_ducklake', 'people', 'people.parquet', allow_missing => true);

Add the file. If the file has extra columns in the table they will be ignored (they will not be queryable through DuckLake):

CALL ducklake_add_data_files('my_ducklake', 'people', 'people.parquet', ignore_extra_columns => true);

Missing Columns

When adding files to a table, all columns that are present in the tablemust be present in the Parquet file, otherwise an error is thrown. The
allow_missing option can be used to add the file anyway – in which case anymissing columns will be substituted with the initial_
default value of the column.

Extra Columns

When adding files to a table, if there are any columns present that are not present in the table, an error is thrown by default. The ignore_
extra_columns option can be used to add the file anyway – any extra columns will be ignored and unreachable.

68

DuckLake Documentation

Type Mapping

In general, types of columns in the source Parquet file must match the type as defined in the table, otherwise an error is thrown. Types in
the Parquet file can be narrower than the type defined in the table. Below is a supportedmapping type:

Table type Supported Parquet types

bool bool
int8 int8
int16 int[8/16], uint8
int32 int[8/16/32], uint[8/16]
int64 int[8/16/32/64], uint[8/16/32]
uint8 uint8
uint16 uint[8/16]
uint32 uint[8/16/32]
uint64 uint[8/16/32/64]
float float
double float/double
decimal(P, S) decimal(P',S'), where P' <= Pand S' <= S
blob blob
varchar varchar
date date
time time
timestamp timestamp, timestamp_ns
timestamp_ns timestamp, timestamp_ns
timestamptz timestamptz

69

DuckLake Documentation

70

Migrations

DuckDB to DuckLake

Migrating from DuckDB to DuckLake is very simple to do with the DuckDB ducklake extension. However, if you are currently using some
DuckDB features that are unsupported in DuckLake, this guide will definitely help you.

First Scenario: Everything is Supported

If you are not using any of the unsupported features, migrating from DuckDB to DuckLake will be as simple as running the following com‑
mands:

ATTACH 'ducklake:my_ducklake.ducklake' AS my_ducklake;
ATTACH 'db.duckdb' AS my_duckdb;

COPY FROM DATABASE my_duckdb TO my_ducklake;

Note that it doesn't matter what catalog you are using as a metadata backend for DuckLake.

Second Scenario: Not Everything is Supported

If you have been using DuckDB for a while, there is a chance you are using some very specific types, macros, default values that are not
literals or even things like generated columns. If this is your case, thenmigrating will have some tradeoffs.

• Specific types need to be cast to a supported DuckLake type. User defined types that are created as a STRUCT can be interpreted as
such and ENUM and UNIONwill be cast to VARCHAR and VARINTwill be cast to INT.

• Macros can be migrated to a DuckDB persisted database. If you are using DuckDB as your catalog for DuckLake, then this will be the
destination. If you are using other catalogs like PostgreSQL, SQLite or MySQL, DuckDBmacros are not supported and therefore can't
be migrated.

• Default values that are not literals require you to change the logic of your insertion. See the following example:

-- Works in DuckDB, doesn't work in DuckLake
CREATE TABLE t1 (id INTEGER, d DATE DEFAULT now());
INSERT INTO t1 VALUES (2);

-- Works in DuckLake and simulates the same behavior
CREATE TABLE t1 (id INTEGER, d DATE);
INSERT INTO t1 VALUES(2, now());

• Generated columns are the same as defaults that are not literals and therefore they need to be specifiedwhen inserting the data into
the destination table. This means that the values will always be persisted (no VIRTUAL option).

Migration Script

The following Python script can be used tomigrate from a DuckDB persisted database to DuckLake bypassing the unsupported features.

71

DuckLake Documentation

Currently, only local migrations are supported by this script. The script will be adapted in the future to account for migrations to
remote object storage such as S3 or GCS.

The script can be run in any Python environment with DuckDB installed. The usage is the following:

usage: migration.py [-h]
--duckdb-catalog DUCKDB_CATALOG
--duckdb-file DUCKDB_FILE
--ducklake-catalog DUCKLAKE_CATALOG
--catalog-type {duckdb,postgresql,sqlite}
[--ducklake-file DUCKLAKE_FILE]
--ducklake-data-path DUCKLAKE_DATA_PATH

If youaremigrating toPostgreSQL,make sure that youprovide the followingenvironment variables for thePostgreSQL secret connection:

• POSTGRES_HOST
• POSTGRES_PORT
• POSTGRES_DB
• POSTGRES_USER
• POSTGRES_PASSWORD

72

Guides

Backup and Recovery

DuckLake has two components: catalog and storage. The catalog contains all of DuckLake'smetadata, while the storage contains all of the
data files in Parquet format. The catalog is a database, while the storage layer can be any filesystem backend supported by DuckDB. These
two components have different backup strategies, so this document will address them separately.

In this document, we will focus on disasters caused by human errors or application failures/malfunctions that result in data corrup‑
tion or loss.

Catalog Backup and Recovery

Backup and recovery strategies depend on the SQL database you are using as a DuckLake catalog.

Compaction and cleanup jobs should only be done before manual backups. These operations can re‑write and remove data files,
effectively changing the file layout for a specific snapshot.

DuckDB Catalog

For DuckDB, the best approach is to perform regular backups of the metadata database. If the original database is corrupted, tampered
with, or even deleted, you can recover from this backup.

-- Backup
ATTACH 'db.duckdb' AS db (READ_ONLY);
ATTACH 'backup.duckdb' AS backup;
COPY FROM DATABASE db TO backup;

-- Recover
ATTACH 'db.duckdb' AS db;
ATTACH 'backup.duckdb' AS backup (READ_ONLY);
COPY FROM DATABASE backup TO db;
ATTACH 'ducklake:db.duckdb' AS my_ducklake;

It is very important to note that transactions committed to DuckLake after the metadata backup will not be tracked when recovering. The
data from the transactions will exist in the data files, but the backup will point to a previous snapshot. If you are running batch jobs, make
sure to always back up after the batch job. If you are regularly micro‑batching or streaming data, then schedule periodic jobs to back up
your metadata.

Tip. If you want to make a backup with the current timestamp, you need to do this with a specific client. Right now ATTACH does
not support functions, only strings. This is how it would look in Python:

import duckdb
import datetime
con = duckdb.connection(f"backup_{datetime.datetime.now().strftime('%Y-%m-%d__%I_%M_%S')}.duckdb")

SQLite Catalog

For SQLite, the process is exactly the same as with DuckDB and has the same implications.

73

DuckLake Documentation

-- Backup
ATTACH 'sqlite:db.duckdb' AS db (READ_ONLY);
ATTACH 'sqlite:backup.duckdb' AS backup;
COPY FROM DATABASE db TO backup;

-- Recover
ATTACH 'sqlite:db.duckdb' AS db;
ATTACH 'sqlite:backup.duckdb' AS backup (READ_ONLY);
COPY FROM DATABASE backup TO db;
ATTACH 'ducklake:sqlite:db.duckdb' AS my_ducklake;

PostgreSQL Catalog

For PostgreSQL, there are twomain approaches to backup and recovery:

• SQL dump: This approach is similar to the onementioned for SQLite and DuckDB. This process can happen periodically and can only
recover to a particular point in time (i.e., the time of the dump). For DuckLake, this will be a specific snapshot, and transactions after
this snapshot will not be recorded.

• Continuous Archiving and Point‑in‑Time Recovery (PITR): This is a more complex approach but allows recovery to a specific point in
time. For DuckLake, this means you can recover to a specific snapshot without losing any transactions.

Note that the SQL dump approach can also be managed by DuckDB using the postgres extension. In fact, the backup can be a DuckDB
file.

-- Backup
ATTACH 'postgres:connection_string' AS db (READ_ONLY);
ATTACH 'duckdb:backup.duckdb' AS backup;
COPY FROM DATABASE db TO backup;

-- Recover
ATTACH 'postgres:connection_string' AS db;
ATTACH 'duckdb:backup.duckdb' AS backup (READ_ONLY);
COPY FROM DATABASE backup TO db;
ATTACH 'ducklake:postgres:connection_string' AS my_ducklake;

Cloud‑hosted PostgreSQL solutions may offer different mechanisms. We encourage you to check what your specific vendor recom‑
mends as a strategy for backup and recovery.

Storage Backup and Recovery

Backup and recovery of the data files also depend on the storage you are using. In this document, wewill only focus on cloud‑based object
storage since it is the most common for lakehouse architectures.

S3

In S3, there are three main mechanisms that AWS offers to back up and/or restore data:

• Cross‑bucket replication
• S3 backup service
• Enable S3 versioning

Both the S3 backup service and S3 object versioning will restore data files in the same bucket. On the other hand, cross‑bucket replication
will copy the files to a different bucket, and therefore your DuckLake initialization should change:

-- Before
ATTACH 'ducklake:some.duckdb' AS my_ducklake (DATA_PATH 's3://<og-bucket>/');

74

https://www.postgresql.org/docs/current/backup-dump.html
https://www.postgresql.org/docs/current/continuous-archiving.html
https://duckdb.org/docs/stable/core_extensions/postgres
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/s3-backups.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Versioning.html

DuckLake Documentation

-- After
ATTACH 'ducklake:some.duckdb' AS my_ducklake (DATA_PATH 's3://<replication-bucket>/');

GCS

GCS has similar mechanisms to back up and/or restore data:

• Cross‑bucket replication
• Backup and DR service
• Object versioning with soft deletes enabled

Regarding cross‑bucket replication, repointing to the new bucket will be necessary.

-- Before
ATTACH 'ducklake:some.duckdb' AS my_ducklake (DATA_PATH 'gs://<og-bucket>/');

-- After
ATTACH 'ducklake:some.duckdb' AS my_ducklake (DATA_PATH 'gs://<replication-bucket>/');

Access Control

While access control is not per se a feature of DuckLake, we can leverage the tools that DuckLake uses and their permission systems to
implement schema‑ and table‑level permissions in DuckLake.

Basic Principles

In this guide, we focus on three different roles regarding access control in DuckLake:

• The DuckLake Superuser can perform any DuckLake operation, most notably:

– Initializing DuckLake (done the first time we run the ATTACH command).
– Creating schemas.
– CREATE, INSERT, UPDATE, DELETE, and SELECT on any DuckLake table.

• The DuckLakeWriter can perform the following operations:

– ATTACH to an existing DuckLake.
– CREATE, INSERT, UPDATE, DELETE, and SELECT on any or a subset of DuckLake tables.
– Optionally, SELECT on any or a subset of DuckLake tables.
– Optionally, CREATE schema.

• The DuckLake Reader can perform the following operations:

– ATTACH to an existing DuckLake. Both READ_ONLY and regular attaching modes will work.
– SELECT on any or a subset of DuckLake tables.

These roles are not actually implemented in DuckLake; they are constructs used in this guide, as they represent the most common
types of roles present in data management systems.

DuckLake has two components: the metadata catalog, which resides in a SQL database, and the storage, which can be any filesystem
backend. The roles mentioned above require different specific permissions at the catalog level:

• The DuckLake Superuser needs all permissions under the specified schema (public by default). Since this user initializes all tables,
they also become the owner. Subsequentmigrations between different version of the DuckLake specificationmust be carried out by
this user.

• The DuckLake Writer only needs permissions to INSERT, UPDATE, DELETE, and SELECT at the catalog level. This is sufficient for
any operation in DuckLake, including operations that expire snapshots.

75

https://cloud.google.com/storage/docs/using-cross-bucket-replication
https://cloud.google.com/backup-disaster-recovery/docs/concepts/backup-dr
https://cloud.google.com/storage/docs/object-versioning

DuckLake Documentation

• The DuckLake Reader only needs SELECT permissions at the catalog level.

At the storage level, we can leverage the way DuckLake structures data paths for different tables, which uses the following convention:

/<schema>/<table>/<partition>/<data_file>.parquet

Using this convention and the policy mechanisms of certain filesystems (such as cloud‑based object storage), we can establish access to
certain paths at the schema, table, or even partition level.

This will not work if we use ducklake_add_data_files and the added files do not follow the path convention; permissions at
the path level will not apply to these files.

The following diagram shows how these roles and their necessary permissions work in DuckLake:

Access Control with S3 and PostgreSQL

The following is an example implementation of the basic principles described above, focusing on PostgreSQL as a DuckLake catalog and
S3 as the storage backend.

PostgreSQL Requirements

In this section, we create the three roles described above in PostgreSQL. We create them as users for simplicity, but you may also create
them as groups if you expect a specific role to be used bymultiple users.

-- Setup initialization user, migrations, and writing, assuming the database is already created
CREATE USER ducklake_superuser WITH PASSWORD 'simple';
GRANT CREATE ON DATABASE access_control TO ducklake_superuser;
GRANT CREATE, USAGE ON SCHEMA public TO ducklake_superuser;
GRANT CREATE, SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA public TO ducklake_superuser;

-- Writer/reader

76

DuckLake Documentation

CREATE USER ducklake_writer WITH PASSWORD 'simple';
GRANT USAGE ON SCHEMA public TO ducklake_writer;
GRANT USAGE, SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA public TO ducklake_writer;

-- Reader only
CREATE USER ducklake_reader WITH PASSWORD 'simple';
GRANT SELECT ON ALL TABLES IN SCHEMA public TO ducklake_reader;

S3 Requirements

In AWS, we create three users. The writer user will only have access to a specific schema, and the reader will only have access to a specific
table. The policies needed for these users are as follows:

DuckLake Test

In this section, we connect to DuckLake using these different roles to demonstrate how the implementation works in practice using the
DuckLake extension of DuckDB.

Let's initialize DuckLake and perform some basic operations with the DuckLake Superuser.

-- Using the credentials for the AWS DuckLake Superuser (other providers such as STS or SSO can also be
used)
CREATE OR REPLACE SECRET s3_ducklake_superuser (
TYPE s3,
PROVIDER config,
KEY_ID '<key>',
SECRET '<secret>',
REGION 'eu-north-1'

);

-- Using the DuckLake Superuser credentials for Postgres
CREATE OR REPLACE SECRET postgres_secret_superuser (
TYPE postgres,
HOST 'localhost',
DATABASE 'access_control',
USER 'ducklake_superuser',
PASSWORD 'simple'

);

-- DuckLake config secret
CREATE OR REPLACE SECRET ducklake_superuser_secret (
TYPE ducklake,
METADATA_PATH '',
DATA_PATH 's3://ducklake-access-control/',
METADATA_PARAMETERS MAP {'TYPE': 'postgres','SECRET': 'postgres_secret_superuser'}

);

-- This initializes DuckLake
ATTACH 'ducklake:ducklake_superuser_secret' AS ducklake_superuser;
USE ducklake_superuser;

-- Perform operations in DuckLake
CREATE SCHEMA IF NOT EXISTS some_schema;
CREATE TABLE IF NOT EXISTS some_schema.some_table (id INTEGER, name VARCHAR);
INSERT INTO some_schema.some_table VALUES (1, 'test');

Now let's use the DuckLakeWriter:

77

DuckLake Documentation

-- Drop this to avoid the extension defaulting to this secret
DROP SECRET s3_ducklake_superuser;

-- Using the DuckLake Writer credentials for Postgres
CREATE OR REPLACE SECRET postgres_secret_writer (
TYPE postgres,
HOST 'localhost',
DATABASE 'access_control',
USER 'ducklake_writer',
PASSWORD 'simple'

);

-- Using the credentials for the AWS DuckLake Writer
CREATE OR REPLACE SECRET s3_ducklake_schema_reader_writer (
TYPE s3,
PROVIDER config,
KEY_ID '<key>',
SECRET '<secret>',
REGION 'eu-north-1'

);

-- DuckLake config secret
CREATE OR REPLACE SECRET ducklake_writer_secret (
TYPE ducklake,
METADATA_PATH '',
DATA_PATH 's3://ducklake-access-control/',
METADATA_PARAMETERS MAP {'TYPE': 'postgres','SECRET': 'postgres_secret_writer'}

);

ATTACH 'ducklake:ducklake_writer_secret' AS ducklake_writer;
USE ducklake_writer;

-- Perform operations
CREATE TABLE IF NOT EXISTS some_schema.another_table (id INTEGER, name VARCHAR);
INSERT INTO some_schema.another_table VALUES (1, 'test'); -- Works
INSERT INTO some_schema.some_table VALUES (2, 'test2'); -- Also works

-- Try to perform an unauthorized operation
CREATE TABLE other_table_in_main (id INTEGER, name VARCHAR); -- This unfortunately works
INSERT INTO other_table_in_main VALUES (1, 'test'); -- This doesn't work

In the last example, there are limitations to this approach. We can create an empty table, as this only inserts a new record in the metadata
catalog—something the DuckLake Writer is allowed to do. The solution is to wrap table initializations in a transaction to ensure the table
can't be created if there is no permission to insert data.

BEGIN TRANSACTION;
CREATE TABLE other_table_in_main (id INTEGER, name VARCHAR);
INSERT INTO other_table_in_main VALUES (1, 'test');
COMMIT;

This will throw the following error:

HTTP Error:
Unable to connect to URL "https://ducklake-access-control.s3.amazonaws.com/main/other_table_in_
main/ducklake-01992ec2-d9f7-745e-88e8-708e659a70be.parquet": 403 (Forbidden).

Authentication Failure - this is usually caused by invalid or missing credentials.
* No credentials are provided.
* See https://duckdb.org/docs/stable/extensions/httpfs/s3api.html

78

DuckLake Documentation

The error message is the generic one used when DuckDB cannot access an object in S3; nothing specific to DuckLake.

The DuckLake Reader is the simplest role.

DROP SECRET s3_ducklake_schema_reader_writer;
CREATE OR REPLACE SECRET s3_ducklake_table_reader (
TYPE s3,
PROVIDER config,
KEY_ID '<key_id>',
SECRET '<secret_key>',
REGION 'eu-north-1'

);
CREATE OR REPLACE SECRET postgres_secret_reader (
TYPE postgres,
HOST 'localhost',
DATABASE 'access_control',
USER 'ducklake_reader',
PASSWORD 'simple'

);
CREATE OR REPLACE SECRET ducklake_reader_secret (
TYPE ducklake,
METADATA_PATH '',
DATA_PATH 's3://ducklake-access-control/',
METADATA_PARAMETERS MAP {'TYPE': 'postgres','SECRET': 'postgres_secret_reader'}

);
ATTACH 'ducklake:ducklake_reader_secret' AS ducklake_reader;
USE ducklake_reader;

SELECT * FROM some_schema.some_table; -- Works
SELECT * FROM some_schema.another_table; -- Fails

The last query will print the following error:

HTTP Error:
HTTP GET error on 'https://ducklake-access-control.s3.amazonaws.com/some_schema/another_
table/ducklake-019929c8-c9c9-77d7-91e6-bc3c6dc87605.parquet' (HTTP 403)

If we try to create a table, which is just a metadata operation, the error will be different, as it is imposed by a lack of permissions on the
PostgreSQL side:

CREATE TABLE yet_another_table (a INT);

TransactionContext Error:
Failed to commit: Failed to commit DuckLake transaction: Failed to write new table to DuckLake: Failed
to prepare COPY "COPY "public"."ducklake_table" FROM STDIN (FORMAT BINARY)": ERROR: permission denied
for table ducklake_table

79

DuckLake Documentation

80

Unsupported Features

This page describes what is supported in DuckDB and DuckLake in relation to DuckDB standalone (i.e., :memory: or DuckDB file modes).
We canmake a distinction between:

• What is currently not supported by the DuckLake specification. These are features that are supported by DuckDB when using
DuckDB's native database format but will not work with a DuckLake backend since the specification does not support them.

• What is currently not supported by the ducklake DuckDB extension. These are features that are supported by the DuckLake spec‑
ification but are not (yet) implemented in the DuckDB extension.

Unsupported by the DuckLake Specification

Within this group, we are going to make a distinction between what is not supported now but is likely to be supported in the future and
what is not supported and is unlikely to be supported.

Likely to be Supported in the Future

• User defined types.

• Fixed‑size arrays, i.e., ARRAY type

• ENUM type

• Variant types

• CHECK constraints. (Not to be confused with Primary or Foreign Key constraints.)

• Scalar and table macros (functions). However, if the catalog database supports it, there is a workaround:

-- Using DuckDB as a catalog, create the macro in the catalog
USE __ducklake_metadata_my_ducklake;
CREATE MACRO add_and_multiply(a, b, c) AS (a + b) * c;

-- Use the macro to create a table in DuckLake
CREATE TABLE my_ducklake.table_w_macro AS

SELECT add_and_multiply(1, 2, 3) AS col;

• Default values that are not literals. See the following example:

-- This is allowed
CREATE TABLE t1 (id INTEGER, d DATE DEFAULT '2025-08-08');

-- This is not allowed
CREATE TABLE t1 (id INTEGER, d DATE DEFAULT now());

• Dropping dependencies, such as views, when calling DROP ... CASCADE. Note that this is also a DuckDB limitation.

• Generated columns

81

https://duckdb.org/docs/stable/sql/statements/create_type
https://duckdb.org/docs/stable/sql/data_types/array
https://duckdb.org/docs/stable/sql/data_types/enum
https://duckdb.org/docs/stable/sql/constraints#check-constraint
https://duckdb.org/docs/stable/sql/statements/create_macro#examples
https://duckdb.org/docs/stable/sql/statements/drop#dependencies-on-views
https://duckdb.org/docs/stable/sql/statements/create_table#generated-columns

DuckLake Documentation

Unlikely to be Supported in the Future

• Indexes

• Primary key or enforced unique constraints and foreign key constraints are unlikely to be supported as these are constraints are
prohibitively expensive to enforce in data lake setups. We may consider supporting unenforced primary keys, similar to BigQuery's
implementation.

• Upserting is only supported via the MERGE INTO syntax since primary keys are not supported in DuckLake.

• Sequences

• VARINT type

• BITSTRING type

• UNION type

Unsupported by the ducklake DuckDB Extension

The following features are currently unsupported by the ducklake DuckDB extension:

• Data inlining is limited to DuckDB catalogs

• MySQL catalogs are not fully supported in the DuckDB extension

• Updates that target the same rowmultiple times

82

https://duckdb.org/docs/stable/sql/indexes
https://duckdb.org/docs/stable/sql/constraints#primary-key-and-unique-constraint
https://duckdb.org/docs/stable/sql/constraints#foreign-keys
https://cloud.google.com/bigquery/docs/primary-foreign-keys
https://cloud.google.com/bigquery/docs/primary-foreign-keys
https://duckdb.org/docs/stable/sql/statements/create_sequence
https://duckdb.org/docs/stable/sql/data_types/numeric#variable-integer
https://duckdb.org/docs/stable/sql/data_types/bitstring
https://duckdb.org/docs/stable/sql/data_types/union

DuckLake Documentation

Acknowledgments

83

DuckLake Documentation

This document is built with Pandoc using the Eisvogel template. The scripts to build the document are available in the ducklake-web
repository.

The emojis used in this document are provided by Twemoji under the CC‑BY 4.0 license.

The syntax highlighter uses the Bluloco Light theme by Umut Topuzoğlu.

85

https://pandoc.org/
https://github.com/Wandmalfarbe/pandoc-latex-template
https://github.com/duckdb/ducklake-web/tree/main/single-file-document
https://github.com/duckdb/ducklake-web/tree/main/single-file-document
https://twemoji.twitter.com/
https://creativecommons.org/licenses/by/4.0/
https://github.com/uloco/theme-bluloco-light

	Contents
	Summary
	Specification
	Introduction
	Data Types
	Queries
	Tables
	Tables
	ducklake_column
	ducklake_column_mapping
	ducklake_name_mapping
	ducklake_column_tag
	ducklake_data_file
	ducklake_delete_file
	ducklake_file_column_stats
	ducklake_file_partition_value
	ducklake_files_scheduled_for_deletion
	ducklake_inlined_data_tables
	ducklake_metadata
	ducklake_partition_column
	ducklake_partition_info
	ducklake_schema
	ducklake_schema_versions
	ducklake_snapshot
	ducklake_snapshot_changes
	ducklake_table
	ducklake_table_column_stats
	ducklake_table_stats
	ducklake_tag
	ducklake_view

	DuckDB Extension
	Introduction
	Usage
	Connecting
	Choosing a Catalog Database
	Choosing Storage
	Snapshots
	Schema Evolution
	Time Travel
	Upserting
	Configuration
	Paths

	Maintenance
	Recommended Maintenance
	Merge Adjacent Files
	Expire Snapshots
	Cleanup of Files
	Rewrite Heavily Deleted Files
	Checkpoint

	Advanced Features
	Constraints
	Conflict Resolution
	Data Change Feed
	Data Inlining
	Encryption
	Partitioning
	Transactions
	Row Lineage
	Views
	Comments

	Metadata
	List Files
	Adding Files

	Migrations
	DuckDB to DuckLake

	Guides
	Backup and Recovery
	Access Control

	Unsupported Features

	Acknowledgments

